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Abstract

Sequence-structure alignment of RNA with arbitrary secondary structure is Max-SNP-hard. Therefore,
the problem of RNA alignment is commonly restricted to nested structure, where dynamic programming
yields efficient solutions. However, nested structure cannot model pseudoknots or even more complex struc-
tural dependencies. Nevertheless those dependencies are essential and conserved features of many RNAs.
Only a few existing approaches deal with crossing structures. Here, we present a constraint approach for
alignment of structures in the even more general class of unlimited structures. Our central contribution is a
new RNA alignment constraint propagator. It is based on an efficient O(n2) relaxation of the RNA alignment
problem. Our constraint-based approach Carna solves the alignment problem for sequences with given input
structures of unlimited complexity. Carna is implemented using Gecode.

In the post-genomic era, biologists get more and more interested in studying non-coding RNA molecules
with catalytic and regulatory activity as central players in biological systems. The computational analysis of
non-coding RNA requires to take structural information into account. Whereas RNAs form three-dimensional
structures, structural analysis of RNA is usually concerned with the secondary structure of an RNA, i.e. the set
of RNA base pairs (i, j) that form contacts (H-bonds) between the bases i and j. The RNA alignment problem
is to align two RNA sequences A and B with given secondary structure for each RNA such that a score based
on sequence and structure similarity is optimized. The difficulty of this problem depends on the complexity of
the RNA structures. Therefore, a complexity hierarchy of RNA structures was introduced. Most RNA analysis
is performed for the class of nested structures P, where base-pairs do not cross, because for this class one can
find efficient dynamic programming algorithms for structure prediction and alignment under reasonable scoring
schemes [13, 6]. The more general class of crossing RNA structures P restricts the degree of base pairing to at
most one, as is commonly assumed for single RNA structure. Prediction and alignment in this class is NP-hard
in general [2]. However, one can devise a number of algorithms that efficiently predict or align RNAs with
structures from classes in between non-crossing and arbitrary crossing [10, 9, 8]. However these algorithms have
complexities that limit their application range. Other approaches for RNA alignment handle crossing structures
with parametrized complexity, were the parameter captures the complexity of the structures [7]. Finally, the
ILP approach Lara [1] computes alignments of arbitrarily complex crossing structures and appears to be more
effective than dynamic programming based approaches. The success of this AI technique was a strong motivation
for this work, where we study the alignment of RNAs with structures of unlimited complexity using constraint
programming.

Contribution We devise a constraint algorithm for the problem of aligning two RNA molecules with given
sequences and unlimited secondary structures. By modeling and propagating constraints on integers, the method
goes beyond rephrasing the ILP approach [1] in CP. We describe the constraint model, develop a new RNA
alignment propagator, and present a specific search strategy. It is implemented using the Gecode constraint
programming system. Finally, we apply our method to align both RNA molecules with given fixed structures
and RNA molecules with associated base pair probability matrices.
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1 Methods

1.1 Preliminaries

An RNA sequence S is a string over the set of bases {A,U,C,G} and an RNA structure P is a set of base pairs
(also called arcs) (i, j) with 1≤ i < j ≤ |S|. We define an arc-annotated sequence as pair of RNA sequence and
RNA structure and denote the i-th symbol of S by S[i].

One constructs a hierarchy of RNA structure classes based on the following properties. Two arcs (i, j) and
(i′, j′) are called nested iff i < i′< j′< j or i′< i < j < j′, they are independent iff i < j < i′< j′ or i′< j′< i < j.
A RNA structure P is called nested if all differing base pairs (i, j),(i′, j′)∈ P are either nested or independent. In
a crossing RNA structure P each base is involved in at most one base pair, i.e. ∀(i, j) 6= (i′, j′) ∈ P : i 6= i′∧ j 6=
j′ ∧ i 6= j∧ i′ 6= j′. We use the term unlimited to refer to an arbitrary RNA structure. Note that by definition
each nested structure is crossing, and each crossing structure is unlimited, such that these classes form a class
hierarchy.

An alignment A of two arc-annotated sequences (Sa,Pa) and (Sb,Pb) is a set Am∪Ag, where Am ⊆ [1..|Sa|]×
[1..|Sb|] is a set of match edges such that for all (i, j),(i′, j′) ∈ Am it holds that 1.) i > i′ implies j > j′ and 2.)
i = i′ if and only if j = j′ and Ag is the set of gap edges {(x,−) | x ∈ [1..|Sa|]∧@y : (x,y) ∈ Am }∪{(−,y) | y ∈
[1..|Sb|]∧@x : (x,y) ∈ Am }. We define the (i, i′)-prefix of A as A∩ ({( j, j′) | j ≤ i, j′ ≤ i′ }∪{( j,−) | j ≤ i}∪
{(−, j′) | j′ ≤ i′ }) and the (i, i′)-suffix of A as A∩ ({( j, j′) | j > i, j′ > i′ }∪{( j,−) | j > i}∪{(−, j′) | j′ > i′ }).

Fix two arc-annotated sequences (Sa,Pa) and (Sb,Pb) with unlimited structures Pa and Pb. Define the score
of alignment A of (Sa,Pa) and (Sb,Pb) as

score(Am∪Ag) := ∑
(i,i′)∈Am

σ(i, i′)+ ∑
(i, j)∈Pa,(i′, j′)∈Pb,
(i,i′)∈Am,( j, j′)∈Am

τ(i, j, i′, j′) + γ|Ag|,

where σ(i, j) is the similarity of bases Sa[i] and Sb[ j], τ(i, j, i′, j′) is the similarity of base pairs (i, j) ∈ Pa and
(i′, j′) ∈ Pb and γ is the gap cost. Commonly, scores for sequence-structure alignment penalize the base match
of different bases but don’t penalize the same match if it occurs as part of a base pair match. We emphasize that
our scoring function can express such scores, in the same way as scoring functions that don’t add base similarity
in case of a structural base match. For example, if bases Ai and B′i differ, the negative contribution by σ(i, i′) can
be compensated by τ(i, i′, j, j′) in a structural match.

The alignment problem is to determine argmax
A alignment of (Sa,Pa) and (Sb,Pb)

score(A).

Please note that we score the matches of all base pairs that are matched by the alignment. Given unlimited
structures Pa and Pb, our approach is thus able to simultaneously take into account several biologically relevant
RNA structures per sequence. In contrast, Lara [1] would select a single, best crossing RNA structure for each
sequence and score the match of only those structures. This assumes that there is only one conserved crossing
structure for each RNA. The potential advantages of our scoring for aligning RNAs with conserved unlimited
structure have still to be explored (see Discussion). For the special case of crossing structures with positive
weights there is no difference between the scoring by our approach and Lara, because in this case Lara scores the
matches of all base pairs matched by the alignment. This justifies our direct comparison of the two approaches
for this case.

1.2 Constraint Model

We model an alignment of arc-annotated sequences (Sa,Pa) and (Sb,Pb) by variables MDi and Mi for 1≤ i≤ |Sa|
with initial domains D(MDi) = {1, . . . , |Sb|} and D(Mi) = {0,1}. We write ~MD and ~M to denote the vectors of
respective variables MDi and Mi.

A valuation V of these variables corresponds to a class A (V ) of alignments A of (Sa,Pa) and (Sb,Pb) as
defined by

V (MDi) = j∧V (Mi) = 1 iff (i, j) ∈ A

V (MDi) = j∧V (Mi) = 0 iff (i,−) ∈ A

∧∀(i′, j′) ∈ A : i′ < i→ j′ ≤ j∧ i′ > i→ j′ > j.
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In this way, Mi tells whether i is matched or deleted and the value j of MDi tells that i is matched to j or
deleted after j. One can show that A (V ) has at most one element and that for each alignment A of (Sa,Pa) and
(Sb,Pb) there is a corresponding valuation.

For example, the following alignment and valuation correspond to each other:

A = {(1,1),(−,2),(−,3),(2,4),(3,−),(4,5)}

, which is often written as
A--CUG
ACAC-G

, corresponds to the valuation ~MD = (1,4,4,5) and ~M = (1,1,0,1).

Notably, alignments corresponding to a valuation that assigns MDi = j can be composed from an alignment
of prefixes Sa[1..i] and Sb[1.. j] and an alignment of suffixes Sa[i+1..|Sa|] and Sb[ j +1..|Sb|] regardless of Mi.

We introduce a constraint Alignment( ~MD, ~M) that is satisfied by any valuation with a corresponding align-
ment. Furthermore, we model the score of the alignment. Therefore, we introduce a variable Score and a
constraint AlignmentScore( ~MD, ~M,Score). This constraint relates a valuation of MD and M to the score of its
corresponding alignment.

Both constraints are propagated by the propagator of the next subsection. For finding optimal alignments
we perform a depth-first branch-and-bound search enumerating MD and M according to a specific search strategy
described at the end of the next section. Successfully applying branch-and-bound requires good upper bounds
for the alignment score, such that large parts of the search tree can be pruned. Computing such bounds efficiently
is the central job of the alignment propagator.

1.3 The Alignment Propagator

The alignment propagator computes hyper-arc consistency for the constraint Alignment( ~MD, ~M) and propa-
gates AlignmentScore( ~MD, ~M,Score).

It prunes ~MD and ~M due to the score by computing upper score bounds for single variable assignments and
furthermore computes lower and upper bounds for Score based on ~MD and ~M.

Define the class A (D) as union of A (V ) over all valuations V that satisfy D. The computation of bounds
is based on a relaxation of the alignment problem. In this relaxation the two ends of each base pair match are
decoupled. Thus in the relaxed optimization problem for D, we maximize a relaxed score

scorerelaxed(Am∪Ag) := ∑
(i,i′)∈Am

[
σ(i, i′)+

1
2

ubD(i, i′)
]

+ γ|Ag|,

over all alignments in A (D), where
ubD(i, i′) := max

Am∪Ag∈A (D)
∑

(i, j)∈Pa,(i′, j′)∈Pb,
(i,i′)∈Am,( j, j′)∈Am

τ(i, j, i′, j′) + ∑
( j,i)∈Pa,( j′,i′)∈Pb,
(i,i′)∈Am,( j, j′)∈Am

τ( j, i, j′, i′).

Here, ubD works as an upper bound for the score contributions by arc matches involving (i, i′) and conse-
quently scorerelaxed(A) ≥ score(A) for A ∈ A (D). Thus, solving the relaxed problem yields an upper bound of
Score.

For a moment, postpone how to efficiently compute ubD(i, i′). Then, because the relaxed score has the form
of a sequence similarity score, one can apply the Smith-Waterman algorithm [11] to maximize the relaxed score
in O(n2) by dynamic programming, where n = max(|Sa|, |Sb|). The optimization problem is easily constrained
due to domain D, because domains directly restrict the valid cases in the dynamic programming recursion.

Tracing back through the dynamic programming matrix yields an alignment Al such that scoreAl is a lower
bound of Score. Furthermore, we compute upper bounds for each single variable valuation. This requires to
complement the above “forward algorithm” that computes the matrix entries

Prefix(i, i′) := max
(i, i′)-prefix Ap

ii′ of A∈A (D)
scorerelaxed(A

p
ii′)

by a symmetric “backward algorithm” that computes the entries

Suffix(i, i′) := max
(i, i′)-suffix As

ii′ of A∈A (D)
scorerelaxed(As

ii′).
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Now the variables ~MD can be pruned efficiently, because Prefix(i, i′)+Suffix(i, i′) is an upper bound for the
assignment MDi = j. Similarly, we prune ~M using the two matrices.

It remains to describe the efficient computation of ubD(i, i′). It suffices to describe the maximization of
∑ (i, j)∈Pa,(i′, j′)∈Pb,

(i,i′)∈Am,( j, j′)∈Am

τ(i, j, i′, j′) over alignments in A (D). A single match ( j, j′) can occur in an alignment in

A (D) if j′ ∈ D(MD j) and 1 ∈ D(M j). However, we look for the best set of simultaneously valid matches ( j, j′).
The structure of this subproblem is analogous to sequence alignment. Thus, it is solved efficiently by dynamic
programming. Therefore, ub(i, i′) is computed in O(kk′) time, where k and k′ are the respective number of base
pairs incident to i and i′. For many applications k and k′ can be constantly bounded such that the propagator runs
in O(n2) time and space.

Incrementality The propagator profits from reduced domain sizes of the variables ~MD, because Prefix(i, i′)
is finite only if i′ ∈ D(MDi) and the Suffix-matrix is analogously restricted. The complexity of the propagator
is therefore given more precisely as O(∑|Sa|

i=1 |D(MDi)|). We postponed the idea of incrementally updating the
matrices according to domain changes, because we expect large domain changes due to our propagator. Large
domain changes would likely counteract the benefits of matrix updates.

Affine gap cost The method is straightforwardly extended to affine gap cost by using a Gotoh-like forward and
backward algorithm in the propagator without increasing its complexity. It appears that this modification comes
more natural in our approach than the corresponding extension in ILP, because it does not require any change of
the model.

Propagator-guided search strategy Our search strategy guides the search to disprove overestimated bounds
fast and to find valid good alignments quickly. Because information for achieving both goals is computed during
propagation and is expensive to recompute, we reuse propagation results for guiding the search. We select a
variable with large domain size that yields a high undecided contribution to the upper bound. We split the
domain of this variable to select the 20% highest relaxed scores first.

2 Results

The method, called Carna, is implemented in C++ using the constraint programming system Gecode. For han-
dling input and output as well as for special datastructures we reused code of LocARNA [12].

We run tests for two application scenarios. First, we explore Carna’s behavior on crossing input structure
using instances from all 16 Rfam families with crossing structure. Table 1 compares our results to Lara [1]. The
table omits all 8 instances where both approaches run in less than 0.1 seconds. In all but one of the omitted cases,
Carna solves the problem without backtracking. In terms of performance, with the single exception of tmRNA,
both programs are on a par.

In our second scenario, we align dot-plot matrices as computed by RNAfold[5]. We obtain unlimited input
structures by base pair filtering as e.g. done in LocARNA. As in LocARNA and PMcomp [4] base pair simi-
larities are weighted according to the base pair probabilities. This results in alignments that are guided by the
common structural potential of both RNAs and not only a single common structure. We align two tRNAs closing
the search tree after nine nodes. Two TPP riboswitches of sizes 108 and 111 are aligned in 0.24 seconds closing
the tree after 100 nodes.

3 Discussion

We showed that a constraint-based approach to RNA alignment can be competitive with the ILP based method
Lara for crossing structures. Moreover, the approach is the first such method that scores unlimited structure. In
this way, it differs from simultaneous alignment and folding approaches like Lara, which score only crossing
(or even more restricted) substructures of unlimited input structures. The full potential of scoring unlimited
structure and its biological applications, e.g. for aligning dot-plots of riboswitches and RNAs with conserved
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Family Instance Size Run-time (s) Carna Search Tree
|Sa| |Sb| |Pa| |Pb| Carna Lara Depth Fails Size

Entero OriR 126 130 35 41 0.03 0.18 38 13 50
Intron gpI 443 436 60 60 0.1 0.2 0 0 1

IRES Cripavirus 202 199 59 57 0.2 0.04 157 127 296
RNaseP arch 303 367 88 110 0.46 1.4 63 8 64

RNaseP bact b 408 401 125 125 3.0 2.3 370 677 1463
RNaseP nuc 317 346 65 66 0.07 2.9 14 4 16

Telomerase-vert 448 451 112 116 0.47 2.3 146 32 161
tmRNA 384 367 110 110 63 3.7 433 14347 28785

Table 1: Results for the eight hardest instances of the benchmark set with crossing structures. We omit details
for 8 instances where both programs run in less than 0.1 seconds.

folding dynamics have still to be explored. A constraint-based method promises flexibility for further extensions
and improvements. Solving relaxed problems in propagators for handling crossing and unlimited RNA structure
was shown to be a viable approach and appears to be generalizable to related problems.

Acknowledgments This work is partially supported by DFG grants WI 3628/1-1, BA 2168/3-1, PRIN08 In-
novative multi-disciplinary approaches for constraint and preference reasoning and GNCS-INdAM Tecniche
innovative per la programmazione con vincoli in applicazioni strategiche.

References
[1] Markus Bauer, Gunnar W. Klau, and Knut Reinert. Accurate multiple sequence-structure alignment of RNA sequences

using combinatorial optimization. BMC Bioinformatics, 8:271, 2007.
[2] Guillaume Blin, Guillaume Fertin, Irena Rusu, and Christine Sinoquet. Extending the hardness of RNA secondary

structure comparison. In Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, First Inter-
national Symposium, ESCAPE 2007, Hangzhou, China, April 7-9, 2007, Revised Selected Papers, volume 4614 of
Lecture Notes in Computer Science, pages 140–151. Springer, 2007.

[3] Patricia A. Evans. Finding common subsequences with arcs and pseudoknots. In CPM ’99: Proceedings of the 10th
Annual Symposium on Combinatorial Pattern Matching, pages 270–280, London, UK, 1999. Springer-Verlag.

[4] I. L. Hofacker, S. H. Bernhart, and P. F. Stadler. Alignment of RNA base pairing probability matrices. Bioinformatics,
20(14):2222–7, 2004.

[5] Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian Bonhoeffer, Manfred Tacker, and Peter Schuster. Fast
folding and comparison of RNA secondary structures. Monatshefte Chemie, 125:167–188, 1994.

[6] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit distance between RNA structures. Journal of
Computational Biology, 9(2):371–88, 2002.
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