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Abstract

Recent genome-wide computational screens that search for conservation of RNA secondary

structure in whole genome alignments (WGAs) have predicted thousands of structural non-

coding RNAs (ncRNAs). The sensitivity of such approaches, however, is limited due to their

reliance on sequence-based whole-genome aligners, which regularly misalign structural ncR-

NAs. This suggests that many more structural ncRNAs may remain undetected. Structure-

based alignment, which could increase the sensitivity, has been prohibitive for genome-wide

screens due to its extreme computational costs. Breaking this barrier, we present the pipeline

REAPR (RE-Alignment for Prediction of structural ncRNA), which efficiently realigns whole

genomes based on RNA sequence and structure, thus allowing us to boost the performance of

de novo ncRNA predictors, such as RNAz. Key to the pipeline’s efficiency is the development

of a novel banding technique for multiple RNA alignment. REAPR significantly outperforms

the widely-used predictors RNAz and EvoFold in genome-wide screens; in direct compar-

ison to the most recent RNAz screen on D. melanogaster, REAPR predicts twice as many

high-confidence ncRNA candidates. Moreover, modENCODE RNA-seq experiments confirm a

substantial number of its predictions as transcripts. REAPR’s advancement of de novo struc-

tural characterization of ncRNAs complements the identification of transcripts from rapidly

accumulating RNA-seq data.
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Introduction

Numerous experimental and computational studies have established the ubiquity, versatility, and piv-

otal role of non-coding RNAs (ncRNAs). Such RNAs perform diverse regulatory and catalytic biological

functions, acting as transcripts without being translated to proteins, in many cases mediated by their

distinct stable and evolutionarily-conserved structure. Prominent examples are structural precursors to

small microRNAs (miRNAs) (Schnall-Levin et al. 2011, 2010; Lagos-Quintana et al. 2001; Lau et al.

2001), structural meso-sized RNAs (≤ 200 bases) including snoRNAs (Bachellerie et al. 2002), tRNAs, and

rRNAs, as well as more recently discovered long non-coding RNAs such as HOTAIR (Gupta et al. 2010),

roX1 (Larschan et al. 2011), and Hsrω (Mallik and Lakhotia 2010). Whereas long ncRNAs are assumed to

rarely form single stable structures, unlike for example the large structural RNaseP:RNA (Masquida and

Westhof 2011), the prevalence of local structural motifs in long ncRNAs is as yet largely unknown (Roy

et al. 2010; Gorodkin and Hofacker 2011).

Experimental high-throughput methods, such as the application of RNA-seq by the modENCODE

consortium (Roy et al. 2010), have catalogued thousands of non-coding transcripts in eukaryotic genomes;

yet, they do not by themselves distinguish between structured and unstructured transcripts nor do they

identify local structural motifs. Computational genome-wide screens have identified thousands of potential

structural ncRNAs based on conserved RNA structure; however, the true number of structural ncRNAs

in eukaryotic genomes still can only be estimated, with current estimates as high as several tens of thou-

sands (Pheasant and Mattick 2007; Esteller 2011).

Computational de novo prediction of structural ncRNA was pioneered by qrna (Rivas and Eddy 2001),

which identifies structural RNAs from pairwise alignments using stochastic context free grammars (SCFG).

By screening multiple whole-genome alignments (WGAs), the more recent approaches of RNAz (Washietl

et al. 2005b), which efficiently detects structural stability and conservation by energy minimization and

support vector machines, and the phylo-SCFG based EvoFold (Pedersen et al. 2006) have significantly
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increased prediction accuracy. Such methods have been applied to screen WGAs of mammals (Washietl

et al. 2005a; Pedersen et al. 2006) and Drosophila (applying RNAz (Rose et al. 2007), EvoFold (Stark

et al. 2007), and EvoFold-like grammar-based approaches (Bradley et al. 2009)). RNAz and EvoFold

have further been run on the ENCODE pilot region of the human genome by Washietl et al. (2007).

A fundamental limitation of these methods is that, for computational efficiency, they rely on fixed

whole-genome alignments yet do not attempt to correct potential misalignments, which may conceal con-

served structures. Since conserved structures can be dissimilar on the sequence level, correctly aligning their

sequences is particularly challenging for current whole-genome aligners (Dubchak et al. 2009; Blanchette

et al. 2004; Paten et al. 2008), which consider only sequence similarity. Indeed, purely sequence-based

methods fail at or below sequence identities of 60% (Gardner et al. 2005). Therefore, structure-based

alignment methods are required to avoid or fix misalignments in WGAs. Robustness to “slight” misalign-

ments was first addressed by MSARI (Coventry et al. 2004), which detects significantly conserved RNA

secondary structures even if they are slightly misaligned in the WGA. More recently, CMfinder (Yao

et al. 2006), which constructs SCFG-based consensus models of RNAs by expectation maximization, has

circumvented misalignments by simultaneously performing RNA sequence alignment and de novo ncRNA

prediction. However, due to its computational demands, CMfinder, and related approaches such as

FOLDALIGN (Gorodkin et al. 1997, 2010), have been limited in their scalability to bacterial genomes and

the non-protein-coding subset of the human ENCODE pilot region (Torarinsson et al. 2008), i.e., to less

than 1% of a eukaryotic genome. In a recent review, Gorodkin and Hofacker (2011) discuss the advantages

of structural alignment-based prediction methods yet identify their lack of speed as a major obstacle.

Here, we present a novel pipeline REAPR for efficient structure-based realignment of whole eukaryote-

sized genomes, which can be used to boost the power of any de novo ncRNA predictor (Fig. 1). REAPR

reveals ncRNAs whose structural conservation is otherwise difficult to detect in purely sequence-based

WGAs due to misalignment. Instead of constructing a WGA from scratch, REAPR realigns an existing
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WGA through a novel banding technique. Whereas typical banding techniques search for an alignment

within a band around the diagonal in an alignment matrix, our method instead searches within a band

around a reference alignment. Realignment in this fashion leverages computation already spent in the con-

struction of the reference alignment and allows REAPR to perform structure-based alignments efficiently

on a genome-wide scale. REAPR’s framework is designed to be flexible, supporting any WGA and ncRNA

predictor.

We applied REAPR to realign and predict structural ncRNAs from WGAs of Drosophila and the

human ENCODE pilot region. To implement REAPR, we performed realignment of genomes by adapting

the fast RNA multiple alignment LocARNA (Will et al. 2007) to our banding technique and predicted

ncRNAs with the well-known RNAz. As a novelty in ncRNA prediction, we control the false discovery rate

(FDR), going beyond the usual a posteriori FDR estimation. REAPR reveals roughly twice as many high-

confidence predictions in D. melanogaster than direct prediction from the original WGA does at the same

FDR. RNA-seq transcriptome data from the modEncode project confirm many of REAPR’s predictions

in D. melanogaster as transcripts during embryo development. Moreover, the new predictions found only

by REAPR tend to have lower sequence identity levels, suggesting that they are inherently more difficult

to detect and that previous ncRNA screens were biased for high identity candidates. Our pipeline not only

increases the total number of ncRNA candidates, but more importantly, the number of true candidates, as

indicated by a higher sensitivity to known annotations and by FDR estimates. Taken together these results

suggest that structural ncRNAs have a much larger presence in Drosophila and humans than previously

estimated. Moreover, they demonstrate the benefit and feasibility of incorporating structural information

for de novo predictions in functional genomics. Beyond structure and ncRNAs, realignment could also be

a powerful means for boosting the prediction of other genomic features.
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Results

The Realignment Pipeline

The REAPR pipeline (Fig. 1) begins by filtering slices (windows) of the given WGA using RNAz’s

dinucleotide shuffling-based estimation of thermodynamic stability. Stability is a necessary property of

structural ncRNAs. It can be conveniently estimated in an alignment-independent way by jointly consider-

ing the minimum free energy of single sequences in a window. The motivation for this filter is to eliminate

windows unlikely to contain ncRNAs due to instability but retain misaligned ncRNAs for further analy-

sis. Of the remaining windows, those that overlap in the same orientation are merged into regions called

stable loci. Finally, these loci are realigned by a new banding variant of LocARNA, and evaluated with

RNAz 2.0 for the presence of structural ncRNAs. The RNAz scores provide a ranking of the loci which

allows us to identify a set of high-confidence predictions that has the same false discovery rate (FDR) as

previous screens (see Methods).

The workhorse of this pipeline is a novel multiple RNA alignment algorithm that gains significant

speed-up through a novel banding technique (see Supplemental Material; Supplemental Fig. 1-2). Figure 2

illustrates this method by aligning three example sequences within a small “band.” The “reference align-

ment” in Figure 2A is realigned within a maximum deviation of ∆ = 1, resulting in the structure-based

alignment in Figure 2F. The deviation limit ensures that the realignment does not alter associations of

the reference alignment by more than one position (∆ positions, in general) upstream or downstream. Re-

alignment is performed in a progressive fashion through a series of pairwise alignments. First, sequences X

and Y are aligned, because they are more similar to each other than to sequence Z. In contrast to a typical

search for the optimal alignment by computing over all matrix entries, the space of possible realignments

is restricted to the small band of entries shown in Figure 2B. This band reflects a deviation of ≤ 1 around

the reference alignment between sequences X and Y. The result is the alignment in Figure 2C. Next, this

6



Will, et al.

alignment is further aligned with sequence Z, again restricted to the band shown in Figure 2E. To compute

this band, we intersect two bands in Figure 2D: the band from the alignment string of X in Figure 2C vs.

Z and the band from the respective alignment string of Y vs. Z (Fig. 2D). Intersecting the bands from all

pairwise combinations ensures that the pairwise deviation constraints are satisfied by the final alignment.

Technically, banding reduces the complexity of the whole alignment procedure by a quadratic factor. We

implement banding in LocARNA, resulting in a novel realignment-variant of the tool. Orthogonal to

banding, LocARNA exploits structural sparsity to cope with the high complexity of the problem; the

same sparsification is also seen in other approaches (Torarinsson et al. 2007; Bauer et al. 2007; Do et al.

2008).

Structure-based realignment reveals many novel predictions

We apply REAPR to predict ncRNAs in twelve Drosophila genomes, utilizing the same WGA as previous

screens (Rose et al. 2007; Bradley et al. 2009). REAPR with ∆ = 20 produces 70% more high-confidence

predictions than directly predicting from the original WGA (Fig. 3D). These “novel predictions,” i.e. those

that are found only after realignment, have visibly lower average pairwise sequence identities (Fig. 3A).

When we substitute structure-based realignment by LocARNA in REAPR with purely sequence-based

realignment by Muscle (Edgar 2004), a substantially smaller number of novel predictions emerge, and

low sequence identities are no longer well-represented (Fig. 3B). Note that while the predictions that were

lost after realignment with REAPR or Muscle concentrate at a high sequence identity above 95%, this

appears to be largely an artifact of most predictions from the original WGA also having such high identity.

Indeed, when the number of lost predictions is normalized by the total number of predictions from the

original WGA, the loss appears more uniformly distributed across identities (Supplemental Fig. 3).

Consistently, over a range of FDRs, REAPR still produces more predictions than the Muscle pipeline

variant or predicting from the original WGA (Fig. 3C). These results strongly suggest that structure-based
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realignment reveals many novel predictions that cannot be obtained from even high-quality sequence-

based methods. Furthermore previous screens may have been biased towards ncRNAs with high sequence

conservation since they relied on fixed WGAs.

In Figures 3A-D we considered predictions that contain any combination of fly genomes, whereas

previous screens restricted attention to loci containing D. melanogaster (Rose et al. 2007; Stark et al.

2007; Bradley et al. 2009). For comparison, we also restricted attention to predictions containing D.

melanogaster. Nonetheless, we continue to observe a boost in predictive power through REAPR (Fig. 3E).

It produces 101% more high-confidence predictions in D. melanogaster than predicting from the original

WGA. On the other hand, the Muscle variant produces roughly as many novels predictions as it loses

through realignment (Fig. 3F).

REAPR predictions are robust to the deviation limit parameter ∆ (Fig. 3G). The sets of high-

confidence predictions in D. melanogaster at deviations ∆ = 5, 10, and 20 more or less coincide such

that their intersection is 91% of the predictions at ∆ = 5.

We also demonstrate that predicted ncRNAs can be used to infer the evolutionary distances between

two species by calculating the number of predictions where both species are present. We apply this idea

using REAPR predictions and are able to recapitulate the Drosophila phylogeny (Supplemental Fig. 4).

Since the position of D. willistoni has been recently debated (Bhutkar et al. 2008), we give further evidence

towards placing it in the subgenus Drosophila, deviating from the conventional phylogeny of the FlyBase

Consortium (Tweedie et al. 2009).

RNA-seq experiments confirm the transcription of many REAPR predictions

High-confidence predictions by REAPR are substantially enriched for transcription. Using RNA-seq

experiments uploaded on modMine (Contrino et al. 2012), we analyzed transcriptional activity during

D. melanogaster embryo development at every two hour-stage between 0 and 24 hours. We quantified the
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transcription level of a prediction by taking the maximum number of reads overlapping the same position

in the prediction (See Methods for justification). Figure 4A plots the number of predictions whose tran-

scriptional levels are greater than or equal to a given minimum level, based on the 20-22h stage which had

the most reads out of all stages. To assess the significance of this distribution, we generated a background

model of predictions by randomizing their genomic positions while preserving the same prediction lengths

and distances between adjacent predictions. We generated a thousand such sets of randomized loci, quan-

tified the loci’s transcription levels, and calculated the mean number of loci and standard deviation as a

function of the minimum level (blue lines). For minimum levels of 50 reads or higher, significantly fewer

randomized loci than actual predictions are identified. The results for all other stages are qualitatively

equivalent (data not shown).

Using these transcriptional levels, we also examined the role of structural ncRNAs in D. melanogaster

embryo development. We identified 117 high-confidence predictions whose levels were at least 1000 reads

during some development stage (Fig. 4B). Of these, 25 are constitutively expressed above 1000 reads

during all stages. Since these sets would seem to contain excellent candidates for further analysis, we

provide predictions and transcription profiles at this and several other level thresholds at the REAPR

website.

Despite these results, there was not a strong correlation, in general, between the confidence in a

prediction and its expression level. Indeed, for high-confidence predictions that have an expression level of

at least 50 reads, the Spearman rank correlation coefficient between these two measures is 0.19 (visualized

in Supplemental Fig. 5). This is consistent with the idea that a more functionally significant gene is not

necessarily expressed at higher levels, and vice versa.
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Improved sensitivity for annotated ncRNAs in D. melanogaster

As an independent benchmark for sensitivity, we counted the number of Rfam and FlyBase annotations

that overlap with our high-confidence predictions in D. melanogaster. We considered the annotation set

Rfam, consisting of 664 ncRNAs from Rfam, and the following four classes of ncRNAs from FlyBase:

tRNA (292 tRNAs), miRNA (191 miRNAs), ncRNA (198 annotations including long non-coding RNAs), and

miscRNA (390 snoRNAs, snRNAs, and 5SrRNAs),

For every annotation set, more annotations are covered by REAPR (∆ = 20) predictions than those

from the original WGA (Fig. 5A). This increase in annotation sensitivity is the net effect of having, on

one hand, the novel predictions cover many annotations and, on the other hand, the “lost” predictions, i.e.

those that are predicted from the original WGA but not by REAPR, cover hardly any annotations. This

negligible contribution by the lost predictions to the annotation sensitivity, despite them comprising 10%

of all predictions from the original WGA in Figure 3C, suggests that most of them do not correspond to

true ncRNAs.

Over a range of FDRs, REAPR still increases the annotation sensitivity (Fig. 5C). Exceptions occur

only at low FDRs, where the sensitivities of both approaches are very low such that the difference is not as

delineating. On the other hand, the Muscle pipeline variant gains coverage for roughly an equal number

of annotations as those for which it loses coverage; this suggests that purely sequence-based realignment

merely “shifts” sensitivity to other ncRNAs rather than increasing the net sensitivity. Furthermore, high-

confidence predictions by REAPR (∆ = 20) overlap with a greater number of annotations than those by a

previous RNAz screen (Rose et al. 2007) or the long and short predictions by EvoFold (Stark et al. 2007)

(Fig. 5B). The sensitivity of the Muscle variant together with the fact that the two previous screens did

not employ structure-based realignment suggest that it is this latter unique feature of REAPR that drives

the improvement in sensitivity.

Further analysis of the long ncRNA transcripts in the ncRNA class shows that many of them overlap
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with only a single prediction, while others are composed of multiple predictions (Supplementary Table 2).

Note that REAPR has a relatively high sensitivity for the miRNA class. While mature miRNAs are short

and thus likely do not contain any structure, we suspect that REAPR is identifying stable structures of

their precursors.

Despite the improvement in annotation sensitivity by REAPR over the original WGA, we sought to

gain a better understanding of why not all of the annotations were covered. Towards this end, we examined

how the annotation sensitivity necessarily decreases through successive steps of REAPR as the span of

genomic loci considered shrinks from the WGA to windows, then to stable loci, and finally to predictions

(Supplementary Table 1). Some of the sensitivity loss can be explained in the first step during the slicing

of the WGA into windows and selection of windows by using rnazWindow.pl, a tool used in all previous

RNAz screens (Washietl et al. 2005b, 2007; Rose et al. 2007). Loss at this step suggests that many ncRNAs

may be misaligned at a non-local scale, consistent with a similar conclusion by Wang et al. (2007) .

Sensitivity for miscRNA and ncRNA are lower than those for other classes (Figure 5C), perhaps due to

qualitative differences in the RNA structure of specific families (miscRNA) and long ncRNAs (ncRNA) that

affect prediction. For example, miscRNA contains C/D-box snoRNAs which, with their characteristic stem

of ∼5 base pairs, may be too short to provide a strong enough signal by itself for prediction. Consistent

with this idea of weak structures, the decrease in sensitivity due to the stability filter step is very large in

these two classes relative to the other classes.

A novel structural motif in the long ncRNA roX1

Figure 6 depicts a novel finding of a putative structural motif in the D. melanogaster gene roX1 (Larschan

et al. 2011) at position chrX:3706976-3707066. roX1 is a long ncRNA that increases the expression

of the X chromosome in D. melanogaster to compensate for the presence of only one X chromosome in

male individuals (Larschan et al. 2011; Straub and Becker 2007). Due to structure-based realignment
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(LocARNA ∆ = 20), REAPR predicts the locus with high-confidence (RNAz score 0.93 and q-value

0.53). It was not predicted from either the original WGA (RNAz score 0, q-value 0.73) or after realignment

with Muscle (RNAz score 0.72, q-value 0.66). A neighboring high-confidence prediction, which overlaps

with a high-confidence prediction (chrX:locus1244) of an earlier RNAz screen by Rose et al. (2007),

further hints at the biological relevance of the finding. Both predicted loci have no overlap with the

EvoFold screen by Stark et al. (2007). To our knowledge this structural motif has not been reported

previously (Byron et al. 2010; Stuckenholz et al. 2003).

Comparison to previous screens in fly and human

Table 1A reports the overlap of high-confidence predictions in D. melanogaster by REAPR (∆ = 20) with

previous screens using RNAz (Rose et al. 2007) and EvoFold (Stark et al. 2007). 10984 (67%) of the

RNAz predictions by Rose et al. (2007) overlap with REAPR predictions and 8055 (49%; not shown in

table) overlap with predictions from the original WGA. These percentages are fairly large compared to

the overlap reported between previous screens. For example, Bradley et al. (2009), who screened with

several EvoFold-like grammar-based approaches, predict an overlap of only 10% with the predictions by

Rose et al. (2007), whereas their predictions overlap up to 60% with EvoFold predictions by Stark et al.

(2007). This is presumably a result of both screens using a phylo-grammar-based approach. 2892 (13%) of

the short and long EvoFold predictions by Stark et al. (2007) overlap with REAPR predictions and only

1767 (8%) overlap with predictions from the original WGA. Overall, REAPR produces substantially more

predictions than both screens, with roughly double as many as the RNAz screen by Rose et al. (2007).

Furthermore, we apply REAPR to an alignment of the human ENCODE pilot region, i.e. 1% of the

human genome, with sixteen vertebrate genomes. We report the overlap with previous screens using RNAz,

EvoFold (both Washietl et al. 2007), and CMfinder (Torarinsson et al. 2008) in Table 1B.

For comparability, we ran REAPR under conditions as similar to these previous screens as possible.
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For example, we used the same Drosophila WGA as in the RNAz screen (Rose et al. 2007); however, this

WGA differs from the one used in the EvoFold screen (Stark et al. 2007). For ENCODE, the true FDRs of

previous screens are unknown, so we assumed, for the purpose of comparison, an FDR of 60% to control

the predictions of REAPR. Nonetheless subtle differences, such as the choice of WGA, uncertain FDRs,

and ad-hoc processing in previous screens, inherently remain.

Discussion

We have introduced an efficient pipeline REAPR for genome-wide structure-based realignment of WGAs

in order to detect conserved RNA structure even in the case of substantial local misalignment of the original

WGA. Whereas the high complexity of structure-based alignment has hitherto impeded such a genome-

wide application, we have done so on a whole eukaryotic genome alignment in less than twice the running

time of a conventional ncRNA screen without realignment. This breakthrough is achieved through a novel

banding algorithm that we introduced for structure-based alignment.

REAPR can accommodate a variety of WGAs, including those constructed by Pecan (Paten et al.

2008) and MultiZ (Blanchette et al. 2004). Notably, REAPR can handle the larger blocks created

by Mercator (Dewey 2007), which is often combined with Pecan, whereas CMfinder has only been

applied to MultiZ WGAs with smaller blocks. The larger blocks of Mercator/Pecan WGAs more

likely contain regions of low sequence identity, where purely sequence-based alignment would frequently

misalign structural RNAs. For this reason, we conjecture that Mercator/Pecan will generally benefit from

structure-based realignment more than MultiZ.

Furthermore, REAPR is flexible in the choice of the ncRNA predictor; RNAz 2.0 could be easily

substituted with EvoFold in the pipeline. Since both predictors capture different sets of ncRNAs (Rose

et al. 2007; Stark et al. 2007; Washietl et al. 2007; Bradley et al. 2009), it is attractive to integrate EvoFold

(or related grammar-based predictors from Bradley et al. (2009)) into the REAPR pipeline in future work.
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Due to this modularity, REAPR can directly profit from future advances in predicting structural ncRNAs

from fixed alignments. The fast realignment algorithm itself is applicable to an even larger class of potential

future screens, in particular to windowless approaches.

Our screen of Drosophila is the first application of structure-based realignment for ncRNA prediction

at the eukaryotic-genome scale. From this application, we report biologically relevant, novel findings. Most

remarkably, we predict twice as many ncRNAs in D. melanogaster as could be found without structure-

based realignment. This increase may be even more significant in light of recent suggestions that previous

screens underestimated their FDRs. For example, Gruber et al. (2010) re-estimate the FDR of an RNAz 1.0

screen in ENCODE from the original estimation of 50% (Washietl et al. 2007) to 82%; Bradley et al. (2009)

report similar observations in Drosophila.

Given the two-fold increase in high-confidence predictions, it seems at first surprising that the increase

in sensitivity for annotated ncRNAs, while significant, is not even stronger. By a breakdown to different

pipeline stages, we identify non-local misalignment as a main culprit. Furthermore, while REAPR detects

structural motifs in many long ncRNAs in general and from the annotation class ncRNA, many other long

ncRNAs from this class may have no structural signal or signals that are too weak to detect. Lastly, we

conjecture that there is bias in the annotation of ncRNAs towards “easy targets” that do not profit from

structure-based realignment.

The RNA-seq experiments across fly embryonic development from modENCODE provide further confir-

mation of our predictions. They do not show the bias of known annotations but do have a high noise level.

By combining expression analysis with computational prediction, we have identified highly transcribed and

structural RNAs that are distinguished candidates for downstream analysis.

Finally, discovering structural ncRNAs that are misaligned on the syntenic-scale requires applying

structure-based methods in the syntenic block construction phase of whole genome aligners. While this

idea is beyond the scope of this paper, fast structure-based alignment algorithms will play a key role in
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coping with this challenge.

Methods

Data

For Drosophila, we used the same WGA as in previous ncRNA screens (Rose et al. 2007; Bradley et al.

2009): a Mercator (Dewey 2007) and Pecan (Paten et al. 2008) alignment of twelve Drosophila CAF1

genome sequences (Drosophila 12 Genomes Consortium (2007); http://rana.lbl.gov/drosophila/). It

was originally downloaded from http://www.sanger.ac.uk/Users/td2/pecan-CAF1; however, it does not

seem to be available anymore nor could we locate an alternate download mirror. We have uploaded a copy

of the alignment onto our supplemental website. For ENCODE, we used the same WGA as in a previous

ncRNA screen (Torarinsson et al. 2008): a MultiZ (Blanchette et al. 2004) alignment of the human

genome (hg18, March 2006) with sixteen vertebrate genomes. We downloaded the WGA from the UCSC

genome browser at http://hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz17way/. We obtained

hg18 coordinates of ENCODE pilot regions of the human genome from the UCSC Table Browser and

generated the subalignment restricted to these regions using Galaxy2 (http://main.g2.bx.psu.edu/).

We obtained annotations of known ncRNAs in D. melanogaster from Rfam 10.0 (Gardner et al. 2011)

and FlyBase (Tweedie et al. 2009) Release 5.4. We partitioned FlyBase’s annotations into the following

classes based on their existing separation into files on the FlyBase website: miRNA, miscRNA, ncRNA, and

tRNA. We removed pre-miRNAs from the class miRNA and merged overlapping annotations. We down-

loaded the results of previous screens from the following URLs: http://www.bioinf.uni-leipzig.de/

Publications/SUPPLEMENTS/07-001/data/all.rnazClusters.05.bed (Rose et al. 2007); allShort.bed,

allLong.bed, and allHighConf.bed located at http://users.soe.ucsc.edu/~jsp/flyFolds/foldClasses/

bed/ (Stark et al. 2007); http://genome.ku.dk/resources/cmf_encode/pages/candidates.php (Torarins-
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son et al. 2008); and rnaz high.bed and evofold high.bed located at http://www.tbi.univie.ac.at/

papers/SUPPLEMENTS/ENCODE/ (Washietl et al. 2007). Where necessary, we converted genomic coordi-

nates of annotations and predictions to dm2 (Release 4 of Berkeley Drosophila Genome Project) of D.

melanogaster or to hg18 of human using the LiftOver tool from the UCSC Genome Browser.

We downloaded RNA-seq data from modMine (Contrino et al. 2012) at

http://intermine.modencode.org/query/experiment.do?experiment=Developmental+Time+Course+

Transcriptional+Profiling+of+D.+melanogaster+Embryo+Using+SOLiD+Stranded+Total+RNA-seq. The

data comes from the modENCODE project “Developmental Time Course Transcriptional Profiling of D.

melanogaster Embryo Using SOLiD Stranded Total RNA-seq” led by Sue Celniker. For each embryo de-

velopmental time stage X (X = 1, . . . , 12), we downloaded the bedGraph-formatted files BCX plus.wig

and BCX minus.wig, which list the coverage of every genomic position by positive or negative-stranded

reads, respectively.

REAPR Pipeline

Stage 1: Constructing stable loci. We used a sliding window approach where we sliced the WGA into

overlapping windows of length 120 at every 40 alignment columns. In each window, we removed individual

sequences with excessive gap content, GC content, or masked characters. We did both the slicing and

removal of sequences by running the script rnazWindow.pl from the RNAz 2.0 package (Gruber et al. 2010),

downloaded from http://www.tbi.univie.ac.at/~wash/RNAz/, without an explicit reference sequence

(option --no-reference) and no limits on the sequence numbers by setting the option --max-seqs to be

the number of species in the WGA.

Next, we filtered the windows according to thermodynamic stability, which we measured as the mean

minimum free energy (MFE) z-score of individual sequences in a window. The z-score of each sequence

was computed using the RNAz 2.0 package. Briefly, the z-score of each sequence is based on a background
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distribution of MFE values that are computed from a set of shuffled versions of the sequence. The shuffling

preserves local features—namely, dinucleotide frequencies and sequence length—because these features

affect the background distribution, as argued, for example, by Workman and Krogh (1999) and in RNAz 2.0

by Gruber et al. (2010). An alternative approach to modeling the background distribution would have been

to use a set of shuffled sequences from the entire genome. However, since the features are not homogeneous

across a genome, using the same shuffled pool for a genome would generate inaccurate z-scores. We

removed windows whose mean MFE z-scores are less than −1, since in practice we found that almost all of

these windows are too unstable to be predicted downstream to contain ncRNAs. A more lenient approach

would have been to keep the window when it contains sequences with very stable MFEs or to selectively

remove sequences with unstable MFEs. However, the selective nature of this approach makes it dangerous

as it could artificially inflate the apparent structural conservation in a window and lead to a higher FDR.

Finally, we merge overlapping or adjacent windows of the same orientation into “stable” loci.

Stage 2: Structure-based realigning with LocARNA and banding. We realigned stable loci with

the tool LocARNA 1.6.2 using the options alifold-consensus-dp to compute consensus dot plots by

RNAalifold; max-diff to set deviation ∆; and max-diff-aln to specify the reference alignment. Fur-

thermore, we used the Drosophila phylogeny at http://rana.lbl.gov/drosophila/ or the 17-vertebrate

phylogeny at http://hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz17way/17way.nh as the guide

tree (option treefile). As controls, we also realigned with Muscle (Edgar 2004) instead of LocARNA,

or we simply forgoed realignment.

Stage 3: Evaluating loci with RNAz 2.0. We evaluated realigned loci for the presence of structural

ncRNAs using the RNAz 2.0 package. To evaluate alignments generated by LocARNA, we ran RNAz

with its structure-based alignment model (option -l), which was trained to evaluate structure-based align-

ment generated by the close LocARNA-relative LocARNATE (Otto et al. 2008). To evaluate the original
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WGA or realignments by Muscle, we ran RNAz with its sequence-based alignment model. For all eval-

uations, we use the new dinucleotide-shuffled model of RNAz 2.0 (option -d). For evaluating a locus

alignment (in a given orientation), we apply rnazWindow.pl of the RNAz 2.0 package as was already used

for constructing stable loci. We regarded the maximal RNAz score of any generated window of the locus

as the score of the locus.

Running the pipeline. When running REAPR, the number of CPUs to be used can be specified with

the -p option. Parallelization is achieved by assigning the task of realigning each locus with LocARNA or

evaluating with RNAz to a separate CPU. The RAM requirement is very low at < 80 MB per CPU. There

are no other major hardware requirements for running REAPR.

LocARNA with a banding constraint of ∆ = 20 runs five times faster on average than without banding.

The usage of the options alifold-consensus-dp and treefile also provides additional speedup. These

speedups reduce the total amount of computation per locus and are thus independent of parallelization.

Overall, running REAPR takes about twice as long as only running RNAz.

Pipeline variants for control

To assess the increase in predictive power gained by structure-based realignment, we also considered two

variants of the REAPR pipeline as controls. In the first variant, we forgo realignment and directly feed

the original alignment of each stable locus directly to RNAz. If loci are predicted by REAPR but not by

this variant, we conclude that structure-based realignment revealed them and consequently refer to them

as “novel predictions”. In the second variant, we isolate the effects of realignment that are not due to

explicit consideration of structure by substituting LocARNA with Muscle (Edgar 2004) in the pipeline.

This variant represents the best realignment pipeline achievable by purely sequence-based alignment since

Muscle is among the most accurate in this class of methods, even for medium and low sequence-homology

RNA alignments (Gardner et al. 2005). For further analysis we considered only predictions with high-
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confidence, according to RNAz’s score and our estimate of a pipeline’s overall false discovery rate (FDR).

High-confidence predictions and controlling the FDR

Previous RNAz screens (Rose et al. 2007; Washietl et al. 2005a) defined a set of high-confidence predictions

by setting a lower threshold of 0.9 on the RNAz score and then afterwards calculating the FDR of the

predictions. A problem with this approach is that setting the same threshold does not guarantee the same

FDR in different screens. Other factors—including the input WGA, how the FDR was estimated, and

other methods that may be specific to a screen—can affect the FDR. Consequently, fixing the threshold

produces predictions of arbitrary quality and can complicate the comparison of screens.

Instead, we took a reverse approach where we first set a desired FDR and then calculated the threshold

needed to achieve that FDR. In this way, we can directly control the FDR, and hence the quality, of our

screens. Doing so also allows us to compare the predictions of our pipeline variants at the same quality.

To identify the desired FDR of our screens, we used the FDR that resulted from applying a threshold of

0.9 on the control pipeline variant without realignment. We then adjusted the thresholds for the control

variant with Muscle realignment and for REAPR to obtain predictions of the same FDR.

Estimating the FDR

By definition, the FDR is the expected ratio of false positive predictions to the total set of predictions.

For a given RNAz score threshold, we estimate the FDR as FDR = Pr[true negative|predict positive] =

Pr[predict positive|true negative] Pr[true negative]
Pr[predict positive] . Since the unknown probability Pr[true negative] can be assumed

to be close to unity in a screen, setting it to unity yields a near-tight upper bound on the FDR. To estimate

Pr[predict positive], we divided npred, the number of windows that are in stable loci and that pass the score

threshold, by ntotal, the total number of windows considered, i.e. all stable and unstable windows selected

by rnazWindow.pl in the first stage of the pipeline.
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The challenge behind estimating Pr[predict positive|true negative] is having a set of windows that are

true negatives, i.e. they do not contain structural ncRNAs. For this purpose, we constructed a “decoy

WGA” that preserved the essential features of the original WGA, such as local dinucleotide frequencies

and conservation patterns, but almost surely do not possess conserved RNA structure.

To generate the decoy WGA, we run the first stage of our pipeline to slice the WGA into windows,

but we skip the step on filtering by stability. Skipping this step allows the windows to merge into blocks

that are longer than the stable loci that would normally form from a filtered set of windows. Moreover,

filtering by stability would create a bias, undesired in the decoy WGA, towards structural RNA-containing

regions. Next, we shuffled the blocks in non-overlapping windows of 120 columns in order to preserve

local alignment features. Following the approach by Gruber et al. (2010), we shuffled a window using

MultiPerm (Anandam et al. 2009) if the window’s sequence entropy is below 0.5 or using SISSIz (Gesell

and Washietl 2008) if the entropy is above 0.5. Both MultiPerm and SISSIz preserve the dinucleotide

frequencies and conservation pattern in the window. The shuffled blocks together constitute a decoy WGA.

Finally, we run the entire pipeline on the decoy WGA to get a set of RNAz scores.

We assume that the scores from the decoy WGA represent a null distribution. Thus, we can estimate

the p-value of a threshold by computing the fraction of scores from the decoy WGA that meet the threshold.

Correcting for multiple hypothesis testing by the Bonferroni-type procedure of Benjamini and Hochberg

(1995), we assign q-values to score thresholds. For this purpose, we applied the procedure p.adjust of

the statistics package R to the p-values of the stable windows. In analogy to the p-value, the q-value is

the FDR of equal or better predictions. We call a locus a “high-confidence prediction”, if and only if its

q-value is greater than or equal to a desired FDR.
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RNA-seq analysis

As a result of REAPR’s sliding window approach, the exact ncRNA boundaries in our predictions are

uncertain (Will et al. 2012). Thus, taking a weighted combination of all reads mapping anywhere in a

locus would be an unsuitable approach to quantifying the transcription of our predictions. Instead, we

quantified the transcription level of a prediction by taking the maximum number of reads overlapping

the same position in the prediction. To keep our analysis independent of correctly predicting the strand

of an ncRNA, we merged overlapping predictions regardless of strand and considered both minus and

positive-stranded reads in the quantification.

Software Availability

The REAPR pipeline and LocARNA, including the realignment extension, are freely available at http:

//reapr.csail.mit.edu/. This site also includes predictions and RNA-seq expression analysis.

Acknowledgments

Thanks to Michael Baym for early discussions on improving whole genome alignments. This work was

partially supported by the German Research Foundation (WI 3628/1-1) and NIH grant RO1GM081871 to

Bonnie Berger.

21

http://reapr.csail.mit.edu/
http://reapr.csail.mit.edu/


Will, et al.

Figure Legends

1 The whole genome REAPR (RE-Alignment for Prediction of structural ncRNAs) pipeline.

Step 1: The syntenic blocks of the WGA are sliced into windows, which are filtered by

thermodynamic stability. Stable windows of the same orientation are merged into stable

loci. Step 2: Each candidate locus is realigned based on sequence and structure similarity

by LocARNA within limited deviation from the WGA. Step 3: Each realigned locus is

evaluated by a de novo ncRNA predictor such as RNAz 2.0 for its likelihood of containing

structural ncRNA. The evaluation is then transformed into a q-value to control FDR.

2 Banding by a reference multiple alignment. The reference alignment (A) is progressively

realigned within a limited deviation of ∆ = 1, resulting in (F). First, the most similar

sequences X and Y are aligned such that the alignment lies within the band in (B) composed

of black matrix entries, corresponding to the original alignment of X and Y in the reference,

and gray entries, corresponding to deviations of ∆ = 1. Next, the intermediate alignment

(C) is aligned with sequence Z under the constraints of the band in (E). This band is the

intersection of the two bands in (D) generated from the alignment string of X in alignment

(C) vs. sequence Z and the alignment string of Y in (C) vs. Z.
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3 (A-D) High-confidence predictions in fly. (A) Histogram of predictions by REAPR (∆ = 20)

using structure-based realignment or (B) by a variant pipeline using purely sequence-based

realignment as a function of average pairwise sequence identity. Predictions found after

realignment (blue + green) are shown together with predictions found directly from the

original WGA (blue + red). (C) Number of predictions in fly by REAPR (∆ = 5, 10, 20),

the Muscle variant, and from the original WGA as a function of the FDR set for these

pipelines. Note how the Muscle curve almost coincides with the curve of predictions from

the original WGA. (D) Venn diagram depicting the percentage gain and loss in predictions by

REAPR relative to the number of predictions from the original WGA. There are many more

novel predictions (green) by REAPR at lower sequence identities. (E-G) High-confidence

predictions in D. melanogaster. (E) Percentage gain and loss in predictions by REAPR or

(F) by the Muscle variant relative to the number of predictions from the original WGA.

REAPR predicts roughly twice as many ncRNAs while the Muscle variants loses roughly

as many predictions as it gains. (G) Overlap in predictions by REAPR under various

deviation limits of ∆ = 5, 10, 20. The mutual agreement is shown in purple. Predictions

are robust to the deviation limit.
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4 Transcription levels of novel predictions during D. melanogaster embryonic development.

The level of each prediction was measured as the maximum number of RNA-seq reads

overlapping the same position in a prediction. (A) The distribution of predictions as a

function of the minimum transcription level. Levels were calculated using the reads from

stage 20-22h. We show high-confidence predictions from REAPR, ∆ = 20 (green). Dashed

blue lines represent the expected number of random predictions (µ) and the band of ±

one standard deviation (σ). For example, there are 325 REAPR predictions, versus 200.6

(±15.2) random predictions on average, whose transcriptional levels are 100 reads or higher.

(B) Transcription profiles of the 117 REAPR predictions whose levels are at least 1000

reads in at least one stage.

5 Sensitivity to Rfam and FlyBase ncRNA annotations in D. melanogaster. (A) Comparison

of REAPR variants. Each group of four bars shows results for realignment with REAPR

∆ = 5 (5), ∆ = 10 (10), ∆ = 20 (20), and Muscle (M). Each bar shows the number of

annotations identified with realignment (blue+green), without realignment (blue+red), or

both (blue). (B) REAPR versus previous screens by RNAz and EvoFold. For the same

annotation classes, we show the predicted annotations by REAPR with ∆ = 20 (20) and

the previous screens by RNAz (R) and EvoFold (E), where we combined long and short

predictions. (C) Sensitivity of predictions by REAPR (solid) or from the original WGA

(dashed) to different ncRNA annotation classes as a function of the FDR.
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6 A novel potential structural motif in the long ncRNA roX1 of the D. melanogaster chro-

mosome X. The alignment is located on columns 9363200 to 9368080 in the syntenic block

X 3665964 3708413 of the fly WGA and corresponds to positions 3706976 to 3707066 of the

D. melanogaster chromosome X. The figure shows the locus alignment of (A) the original

WGA and (B) that realigned with LocARNA ∆ = 20. RNAalifold (Bernhart et al.

2008) was used to compute the consensus secondary structures (C-D) inferred from (A-B)

respectively, and generate the graphics of figures (A-D). The colors indicate the structure

conservation (saturation) and number of compensatory mutations (hue) in base-paired align-

ment columns. (E) UCSC genome browser visualization of the location of this prediction

(X 3665964 3708413.92) and a neighboring one (X 3665964 3708413.185).
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DSim TCTATGGAGCGAGTACTGGGCTTGAAGCTGGGCTTATCTGGTCACATGTAT---TGA--A 91
DYak TCTATGGAGCGAGTATTGGGCTTGAAGCTGTGTGTTTCTGGTCGCATGTAT---TGA--A 91
DEre TCTATGAAGCGAGTATTGCGCTTGAAGCTGTGTGTTTCTGGTCACATGTAT---TGA--A 91
DPse GCAATGGGGTG----ATGCTAGTGA--GTGGGTGATTCTGGCCATGGCCATAGGTGAATA 113
DPer GCAATGGGGTG----ATGCTAGTGA--GTGGGTGATTCTGGCCATGGCCATAGGTGAATA 113

.........70........80........90........100.......110........

.(((((......((((((.((((((((((((......))))..)))))))).))))))..
DMel UUUGAG------UGUUUCUUGUGUUCAUUAAG---GUUUAA--UGAAUCUAUGGAGCGAG
DSim UUUUAG------UGUUUCUUGGGUUCAUUAAG---GUUUAA--UGAAUCUAUGGAGCGAG
DYak UUUGAU------GGUUACUUUGCUUCAUCAAG---GUUUAA--UGGUUCUAUGGAGCGAG
DEre UUUGAU------GGUUUCUUUGCUUCAUCAAG---UUUUAA--UGAUUCUAUGAAGCGAG
DPse GGGCCAUGGCCUCCUCUGAUCGAUUAGGGGUUUUCUUGCUUGAUUUAUCGGUUGAUGGAG
DPer GGGCCAUGGCCUCCUCUGAUCGAUUAGGGGUUUUCUUGCUUGAUUUAUCGGUUGAUGGAG

.........10........20........30........40........50.........

.....((((.(((((....)))..)).))))......)))))...........
DMel UAAUGCGCUUGAAGCUGU-GUUUAUCUGGUCACAUGUAUUGA----------A 91
DSim UACUGGGCUUGAAGCUGG-GCUUAUCUGGUCACAUGUAUUGA----------A 91
DYak UAUUGGGCUUGAAGCUGU-GUGUUUCUGGUCGCAUGUAUUGA----------A 91
DEre UAUUGCGCUUGAAGCUGU-GUGUUUCUGGUCACAUGUAUUGA----------A 91
DPse CAAUGGGGUGAUGCUAGUGAGUGGGUGAUUCUGGCCAUGGCCAUAGGUGAAUA 113
DPer CAAUGGGGUGAUGCUAGUGAGUGGGUGAUUCUGGCCAUGGCCAUAGGUGAAUA 113

.........70........80........90........100.......110.

C D

E

X_3665964 3708413.185 X_3665964 3708413.92

chrX:locus1244

Figure 6
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Table Legends

1 Pairwise overlap of REAPR predictions (at ∆ = 20) with high-confidence predictions from

previous screens (A) by RNAz, EvoFold (long and short) in D. melanogaster, and (B)

by RNAz (high-confidence), EvoFold, and CMfinder in the ENCODE pilot region of

the human genome. Each table entry in row X, column Y reports the predictions of screen

X that overlap with predictions of screen Y . Thus, the diagonal shows the total number

of predictions in each screen. Note that the overlap is only roughly symmetric because

predictions are genomic regions.
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Table 1

(A) D. melanogaster REAPR RNAz EvoFold

REAPR 30478 10960 2807

RNAz (Rose et al. 2007) 10984 16377 1608

EvoFold (Stark et al. 2007) 2892 1654 22682

(B) human (ENCODE) REAPR RNAz EvoFold CMfinder

REAPR 5032 704 435 485

RNAz (Washietl et al. 2007) 701 3707 268 715

EvoFold (Washietl et al. 2007) 494 292 4968 125

CMfinder (Torarinsson et al. 2008) 470 703 128 6581
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