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ABSTRACT
Motivation: Long non-coding RNAs (IncRNAs) resemble protein-
coding mRNAs but do not encode proteins. Most IncRNAs are
under lower sequence constraints than protein-coding genes and
lack conserved secondary structures, making it hard to predict them
computationally.
Results: We introduce an approach to predict spliced IncRNAs in
vertebrate genomes combining comparative genomics and machine
learning. It is based on detecting signatures of characteristic
splice site evolution in vertebrate whole genome alignments. First,
we predict individual splice sites, then assemble compatible sites
into exon candidates, and finally predict multi-exon transcripts.
Using a novel method to evaluate typical splice site substitution
patterns that explicitly takes the species phylogeny into account,
we show that individual splice sites can be accurately predicted.
Since our approach relies only on predicted splice sites, it can
uncover both coding and non-coding exons. We show that our
predicted exons and partial transcripts are mostly non-coding
and lack conserved secondary structures. These exons are of
particular interest, since existing computational approaches cannot
detect them. Transcriptome sequencing data indicate tissue-specific
expression patterns of predicted exons and there is evidence that
increasing sequencing depth and breadth will validate additional
predictions. We also found a significant enrichment of predicted exons
that form multi-exon transcript parts, and we experimentally validate
such a novel multi-exon gene. Overall, we obtain 336 novel multi-exon
transcript predictions from human intergenic regions.

Our results indicate the existence of novel human transcripts that
are conserved in evolution and our approach contributes to the
completion of the human transcript catalog.

*corresponding author

Availability and Implementation: A Perl implementation of the tree-
based log-odds scoring is available online (see supplement).
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1 INTRODUCTION

A series of high-throughput transcriptomics studies utilizing a
variety of different technologies revealed that mammalian genomes
are pervasively transcribed into a complex mosaic of transcripts
(Carninci et al., 2005; ENCODE Project Consortium, 2007;
Kapranov et al., 2007a,b). A large extent of these transcripts consists
of small and long non-protein-coding RNAs (ncRNAs). Due to
the diverse nature of these transcripts our catalog of genes is still
incomplete.

Computational prediction of protein-coding genes is based on
characteristic features of coding regions that distinguish them
from non-coding DNA (Burge and Karlin, 1997; Cruveiller et al.,
2003). Coding genes exhibit a clear evolutionary signature, since
mutations are often synonymous and preserve the reading frame.
These signals can be exploited to find coding genes by comparative
genomics methods (Solovyev et al., 2006; Stark et al., 2007).
Also machine learning based approaches that recognize splice
sites, transcriptional and translational start and stop signals can
successfully detect coding genes (Stanke and Waack, 2003; Gross
et al., 2007; Schweikert et al., 2009).

In contrast to protein-coding genes, ncRNAs form a heterogeneous
class of transcripts that lacks common sequence patterns,
complicating their detection in genomic DNA. Some ncRNA
classes, including common families like rRNAs, tRNAs and
miRNAs, preserve their characteristic secondary structure during
evolution, guiding a computational predicton (Washietl et al., 2005;
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Nawrocki et al., 2009). However, many other ncRNAs exhibit SVM models and (iii) a set of intergenic candidate sites forming the search
neither conserved secondary structures nor sequence conservat'@mce for putative novel splice sites. The positive set contained thg splice
levels as high as coding exons (Pang et al., 2006; Ponjavic et alsites of theUCSC, Ref Seq, and theHuman nRNA gene tracks. Negative

2007), making it hard to find them computationally. Many long training data were the remaining genic sites (unannotated sites within
non-coding RNAs (IncRNAs) resemble protein-coding mRNAs in introns, exons, or untranslated regions (UTRs)). We considered GT (donor)
that they are often capped, spliced, and polyadenylated. They CE}annd AG (acceptor) dinucleotides (both strands) which were conserved in at

hibit cell t ifi . K to be involved east five species. Alignment blocks had to contain the interfvals 6] for
exnibit cell type-specilic expression, areé known 1o be involve 'ndonorsancﬂ—19, 2] for acceptors (Fig. S3). To avoid obvious false positives,

transcriptional regulation, epigenetics, gene silencing, imprintinggites with avaxEnt Scan (Yeo and Burge, 2004) score 0 were discarded

and are known to play a major role in some human diseasegrig. S4). we only considered canonical (GT/AG) splice sites.

(Mercer et al., 2009; Ponting et al., 2009; Wilusz et al., 2009; we generated five representative sample sets to efficiently train/test donor-
Huarte and Rinn, 2010). Examples includEST which is involved  /acceptor SVMs (| BSVM (Chang and Lin, 2001), rbf-kernel, default

in mammalian female X chromosome inactivation and dosageparameters). Each training-set consisted of 100,000 randomly chosen sites
compensation (Senner and Brockdorff, 2008JALAT1 which (50,000 positives and 50,000 negatives) and 10,000 independent instances to
affects the expression of genes controlling synapse formatiofgst the resulting models (5,000_positive_s and 5,00Q negatives).Wg evaluated
(Bernard et al., 2010), andNRON which regulates nuclear SVM performances by comparing receiver operating characteristics (ROC)

trafficking by repressing the nuclear factor of activated T ceIIs""nd the area.undgr the ROC curve (AUC), see Fig. 1. Observed AUC Va".’es
- were nearly identical among all sets, demonstrating that random sampling
(Willingham et al., 2005).

. did not bias our data. We kept the best performing 5 and 3’ splice site
We recently presented a computational approach to deteghqgels and classified the broad set of intergenic candidatég million)

IncRNAs with conserved intron positions in insect genomes (Hilleryg igentify novel splice sites.
et al., 2009). This approach is solely based on a genomic screen for The splice site classification was based upon the following eight features:
regions that evolve like introns, exploiting that the intron boundaries(1) humanMaxEnt Scan splice site score; (2-4) log-odds substitution
(splice sites) are well conserved and under purifying selection irscoresstrece, Spair: Smedian; (5) NUMber of species in the alignment;
both coding and non-coding genes (Rodriguez-Trelles et al., 20066) number of species with conserved GT/AG dinucleotides and a positive
Ponjavic et al., 2007; Chodroff et al., 2010). The approach cruciallyVBxEnt Scan score; (7) slope of a regression line fitted toife@st Cons
relied on predicting introns as a single unit, which means pairs of°nservation profile of the splice site; (8) aver&mst Cons score.
splice donor (5’) and acceptor (3') sites are predicted in a single The MaxEnt Spgn program (Yeo ._and Burge, 2004) scores spl!ce site

. L . sequences for similarity to typical splice sites. Overall, real splice sites have
step. This strategy works in insect genomes where introns ar

- > ﬁigher scores than false positives (Fig. S4). Next, we computed log-odds
very short (according to Lim and Burge (2001) most a®00nt  scores to capture intrinsic sequence evolution of splice sites (see also next

in Drosophila melanogastgr In contrast, vertebrate introns are paragraph). Splice sites are usually highly conserved at the sequence level.
substantially longer and more variable in their length, preventingrherefore, we included the total number of species per alignment and the
the application of this intron-based method. number of species with a conserved GT (for donors) and AG (for acceptors)
Here, we introduce a novel approachde novopredict spliced as SVM features. The average sequence conservation significantly decrease
transcripts in intergenic regions of vertebrate genomes. Using at the exon-intron boundary and increases at the intron-exon boundary, see g
combination of comparative genomics and machine learning, wé/so (Chodroff et al., 2010). On average, the splice sites are even more
first predict new splice donor and acceptor sites in whole ge‘nomegonserved than the adjacent exons (Fig. S3B). This holds for protein-coding

and subsequently assemble them into exon predictions. Apol inas well as non-coding genes. The slope of a linear regression line fitted to
thi qh ; y i t of 44 tebrat P - APP yd.%ePhast Cons (Siepel et al., 2005) profile of the region [-20,+20] for each
IS approach to an alignment o Vertebrate genomes, we pre 'gblice site captures this information. Figure S5 shows the score distributions

previously unreported coding an_d non-coding trans_cripts Withand discriminative power of the individual features.

conserved exon/intron structures in the well characterized human o _ _

genome and validate these predictions with available transcript datsf9-0dds substitution score#/e computed three variants of species- and

and own experiments site-specific substitution scoresifece, Spair, aNdsedian) based on the

' substitution frequencies in real and false splice sites. These log-odds capture

splice site evolution among species (Fig. 2) and the scare(isf the region
of interest conforms to real splice site evolution and0 otherwise. The

2 METHODS more substitutions are consistent with splice site evolution, the higher is the

. ) ) total score. We evaluated the donor region [-3,6] and the acceptor region
Input data. Our analysis is based on the multiple alignment of 44 vertebrate[r_nlg 2] for all three score variants

genomes with the human hg18 assembly as the reference downloaded fro To compute Score: ., we reconstructed ancestral sequences for each

the UCSC Genome Browser (Rhead et al., 2010). splice site region usingr equel (Siepel et al., 2005). It computes marginal

De novo splice site predictionVe trained support vector machines (SVMs) probability distributions for bases at ancestral nodes in a phylogenetic tree.

to solve the binary classification problem aé novosplice site prediction ~ For each edge of the reconstructed binary tree and for each sité each

comprising the following steps: (i) detect donor and acceptor splice sitdWo related sequences, we computed the frequefiicgf substitutions of

candidates in multiple sequence alignments, (ii) train splice site SVMs withhucleotidez; to nucleotidey; for each position in the splice site region

features capturing patterns of splice site evolution, (jii) use the SVM to scord® # y andz,y € £,% = {4, C, G, T}). We tabulated the log-odds ratio

candidate splice sites. of the total number of pairwise substitutions observed between all positive
To this end, we screened the genome alignment of genic regions foRnd negative training samples. Given a set of sequences, the sum of all log-

donor and acceptor candidates and divided them into real splice site@dds of all observed substitution events along each edge of the reconstructed

that are annotated>(208,000 true positives) and false positives that are Phylogenetic tree is

not supported by available transcript datal@.6 million). To perform i i

supervised machine learning, we compiled three disjoint sets: (i) positive s;.c. = > > log, <f?os(2 =Y/ Pnes fgos(z —n) ) m

and (i) negative samples to train and test individual donor and acceptor e i Theg(@ = 9)/ Xnex fheg(® = n)
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The log-odds substitution scosg,;,- was previously used in (Hiller etal., In case of overlapping exons, one representative according to the highest
2009). We counted substitution frequencies of each splice site position 08VM probability was selected to generate non-overlapping gene structures.
human against each other species, learned the log-odds ratio of positive and

negative samples, and scored intergenic candidates with the sum of observ: 8d|ng VS rlon-codlng exongxons W'thO_Ut protein homology (using
log-odds. BLASTX against the NCBI nr database with -e 1e-5, -F F, -S 1) and no

Scores,pedian Was inspired by the CSF-metric for codon substitution protein-coding potential fa_s predicted BMApode (Washigtl etal., 2011) (b
frequencies (Stark et al., 2007). Similarly 4g,;,, we summed up log- -r -s -p 0.01) were classified as “non-coding”. In addition, exons containing

odds for each splice site position, but took the median instead of totalingStOp'COdOnS in all three reading frames were classified as "non-coding™.

the position-specific scores. Since SVM training- and test-sets have to bgecondary structurealVe appliedRNAz (Washietl et al., 2005) with default

independent (disjoint), log-odds substitution scores were always learned ofarameters (window size 120 nt, step width 40 nt) to search for signatures of
training-sets, never on test-sets. conserved and stable RNA secondary structures in alignments of predicted
Exon prediction.Searching for short splice site signatures in the hugeexons and alignments covering possible exon-exon junctions. For the latter,

intergenic space is expected to yield false positives, even at hinge concatenated 60nt up- and downstream of the predicted intron using

classification confidence values. However, exons as biologically meaningfutlhe Galaxy Browser (Goecks et al., 2010). These 120nt regions mimic

units consist of an acceptor-donor pair in close proximity. To find parts Ofallgnments of the mature transcript and were scoredi to identify

novel transcripts (exons) and to reduce false positives, we derived candidaf?aoss'bIe structures formed by long-range basepairs.

exons from individually predicted splice sites by searching for acceptor-RNA-seq dataTranscription of predicted exons was validated by RNA-seq
donor pairs on the same DNA strand separated by not more than 300 nt. Thigata from Wang et al. (2008). We basically relied to their mappings, but
is a natural cut-off since 85 % of aief Seq exons are shorter than 300nt  re-mapped their short read data to confirm additional exon-exon junctions.
(and still 80 % of all non-coding exons). For each predicted intron, we concatenated 26 nt of the predicted trailing
To predict novel exons in intergenic regions, we evaluated all candidatexons and built 52 nt long putative mature mRNA fragments. We performed
exons using a second SVM (exon-SVM) that was trained on characteristigy BLASTN search of all 32 nt long reads against this database. Short reads
signatures of transcript-confirmed exons. producing nearly perfect BLAST hits30 nt in length, <2 mismatches,
Each internal exon of a multi-exon transcript is flanked by an upstrear‘r’zg, read coverage) spanning the 52nt exon-exon-junction support our
acceptor and a downstream donor. Conservation of such an exon impligsredicted splice-junctions whenever they lack a better hit to other loci in the
compatible acceptor-donor pairs present in many species. To capture thfsnome. Apart from 37 exon-exon-junctions that were directly verified by

conservation and the compatibility of the particular acceptor-donor pair, Wehe annotations of Wang et al. (2008), this procedure additionally confirmed
considered the absolute number and the fraction of species having both fine previously unreported exon-exon junctions.

conserved acceptor and donor as two SVM features. Other features were

the previously assigned class-probabilities of the splice site SVM and théxperimental validationTo experimentally verify a prime multi-exon

distance between particular splice site pairs. The exon-SVM was trainedfanscript candidate we designed primers to the predicted exonic regions in

with six features: (1-2) acceptor and donor SVM classification probability; the human genome usirfgy i mer 3 (v0.4.0, default parameters). Primer

(3) exon length; (4) number of species that have conservation for both splicgeguences: fwd 5'-gcagtgcagaatggcaagt-3'; rev 5-gcctcagcatattcatctcca-

sites; (5) fraction of (4) and the number of species with conserved AG in3- Total RNA from LNCaP and RWPE-1 cells (human prostate

the acceptor alignment; (6) fraction of (4) and the number of species wittfancer cells) was extracted using TRIZOY reagent according to the

conserved GT in the donor alignment. manufacturers instructions (Invitrogen). To eliminate genomic DNA, a
To train this exon-SVM we obtained a set of real exons by requiring thatDNase digestion was performed using the TURBO DNAi¥e Kit

both splice sites are (i) not annotated as part of a pseudogene (accordifgpPplied Biosystems/Ambion, manufacturers instructions). Nekfig

to the Yal e and theUCSC browser tracks), (ii) evolutionary conserved in Of total RNA was reverse transcribed with SuperSérit Il Reverse

the same species (at least five), and (jii) confirmed>by2 spliced ESTs Transcriptase (Invitrogen). Genomic DNA was isolated using DNeasy Blood

as well as> 20 % of all spliced ESTs present at the particular locus. This & Tissue Kit (Qiagen). PCR reactions were performed using Tag-DNA-

was fulfilled for 334 (22 % of 1,521) EST-confirmed exons. The stringent Polymerase (NEB) in 80.l reaction containingl, cDNA or genomic

filtering assures that we exclude cases of transcriptional noise and use onffNA. PCR products were analyzed on 1.5% agarose gels, extracted from

high-quality true positives during training. We randomly selected 284 of thethe gel using the MinElute Gel extraction Kit (Qiagen), cloned using TOPO

334 exons for training and used the remaining 50 to evaluate the SVM. TherfA Cloning® (Invitrogen) and sent out for sequencing (Seqlab).

1,000 EST-unconfirmed exons were randomly selected and 900 of these were

used as negative training examples and the remaining 100 for evaluation.

We repeated this procedure ten times, kept the best performing model witg RESULTS

respect to sensitivity and specificity, and classified the whole exon candidate

pool to detect exons that exhibit signatures specific to EST-confirmed loci. De novo splice site predictiorAs illustrated in Fig. 1, we trained

SVM classifier using the evolutionary signatures of vertebrate splice

: ) sites to distinguish real from false splice sites. Indicating a good
several exons and introns. If the predicted exons are real and belong to multz. "~ ™. fi del hi d hiah AUC val £0.96
exon genes, we expect that they have a tendency to cluster spatially Withiﬂ'sCrlmlna Ive power, our models achieved nig values oro.

the genome. Human introns have a mean length of 6 kb which we used asqr dqnors and 0_'94 for f’icceptors (Fig. 1A). On an .independent test-
cut-off to define genomic clusters of predicted exons. set with 5,000 sites which were not used for Fr.alnlng, we correctly

We performed a simulation test to determine whether predicted clusteréletected 89 % of all true donors at a false positive rate (FPR) of 4 %
(defined here a3 2 exons separated by at most 6 kb on the same strandgnd 84 % of all true acceptors at a FPR of 9% (SVM classification
occur more often than expected. To generate a background distributiorgonfidencep > 0.5). To reduce the FPR to less than 2%, we used
we selected as many rejected exops< 0.5) as we observed positively g more stringent SVM classification confidencepof 0.9, which
classified clustered exonp (> 0.5) and counted the number of (random) - || correctly identifies 81 % (73 %) of real donor (acceptor) sites.
clusters. Repeating this sampling procedure 10,000 times yields empirical This demonstrates that our approach is capable of identifying splice
values which indicate the statistical significance of predicted exon clusterssites at high specificity. Out of 54 million intergenic candidates
about 3.4 million sites were predicted to be regal{ 0.5).

Candidate gene structuredlost coding genes and IncRNAs consist of
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A) Splice site prediction

1. Scan alignments for splice sites, prepare and partition data 2. Compute evolutionary signatures 3. Predict novel splice sites
g 7 prep. p
of splice sites and train/test SVM in intergenic candidates
5' splice site 3' splice site " _ _
PNCLALVACH T BT ¢ e
exon intron " exon > r‘:‘%':fer‘f fcce:tTr) candidates| candidates
Human GGAGTAGGC ATAAATTTATTCTCTCATAGTTC S &g * Ra g
Chimp  GGAGTAGGC ATAAATTTATTCTCTCATAGTTC negatives| - . 4 > ( .
Marmoset GT, AG acceptor |
Moser 6aGTagec [...1 .- TTATTCTCTCATAGTTC P
Bushbaby - - - CTAGAC AGTAATTTATTCTCTCACAATTC 1 ) o jyy
Mouse CCAGTAGCC AGAAATTTATTCTCTTGTAGTTC 9 o0s C ~
- . . - —» = —|
ST 105 eno | Tiwf donor AUC=0.96 v ¥
g
p°§$§',‘2’3e2 set neg%ELYZESSEt 54,644,878 = |acceptor AUC=0.94 e — e —
S ——— P ——— —— ] S— — g0t 927,693 2,497,067
] >0.5 p>0.
135,428 72,854 4,777,120 || 7,841,175 20,187,505 |34,457,373 g0 P I
real donors _real acceptors | | false donors _false acceptors| | Putative donor put. acceptor %0 02 04 06 08 1 novel nove
genic intergenic False Positive Rate donors acceptors
B) Exon prediction ) _
1. AG/GT splice sites pairs 2. Compute evolutionary signatures 3. Classify exons which were
define candidate exons of EST-confirmed exons and train/test SVM not used for SVM training
1
5 <300nt 3 S— Zos S—
S AG g GT_ _~ EST-cont. z oo
intron Texem. intron exons -4 goe AUC=0.92 candidates
——— —— mecs! gos =t g
preliminary subset of S 02 lexon
311,616 | exon candidates others F model novel exons
° J 04 0.6 0.8 1
False Positive Rate

C) Transcript prediction

Cluster exons and resolve gene structures

chri6 2 kbt |
S— 3 33634000 | 33635000 | 33636000 | 33637000 | 33638000
336 — _ predicted gene structures

exon-cluster N - N
, short read confirmed exon-exon-junction ¢
;

. R = spliced ESTs - - -
) - —— —-= - -
H il i i
505 | —————— =
exon-exon-junctions vertebrate conservation — mnE—
1 i m [1 N (m [ ni 1 N
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Fig. 1. Overview on the computational procedure to identify novel spliced transcripts in vertebrate genomegA) First, we extracted splice site
candidates from genome-wide alignments and set up a training set (left panel). We distinguished between (i) real annotated splice sites in genic regions
(ii) false splice sites in genic regions (GT/AG dinucleotides that were similar to real splice sites but were not supported by transcript data), and (iii) §1e

remaining set of intergenic splice site candidates. Second, we compiled a set of evolutionary signatures that are characteristic for vertebrate splice sitgs an
trained donor and acceptor SVM models (middle panel, ROC curves are shown for both models). Thirdly, these SVMs were used to classify intergénic
candidates as either real or false splice sites (right panel). (B) To obtain exon predictions, we searched for pairs of splice sites with a maximal distanée of
300 nt (left), trained a second SVM that considered features of EST-confirmed exons (middle) and ranked predicted exons. Finally, predicted exons wereéther
clustered into partial multi-exon transcripts. (C) Several splice sites and exons/introns of the shown example are confirmed by ESTs and short RNA-seq rgads

Improved log-odds substitution scordducleotide substitutions in  predictive power of either method alone, the AUC improved from
splice sites are highly biased to certain substitution patterns tha.68 to 0.72 for donor and from 0.85 to 0.93 for acceptor sites
follow the splice site consensus sequence (Fig. S2, S3A). ThigFig. 2D). Acceptors, for which we score a longer region that
holds for protein-coding as well as non-coding genes (Fig. S2)comprises the poly-pyrimidine tract, particularly benefit from this
For example, A and G are the preferred nucleotides at the donamovel scoring scheme.

consensus positiof3 and A/G substitutions are the most frequent

substitution at this position in real donors. The pairwise approac . ) : .
P P PP 11,616 candidate exons frode novopredicted splice sitep(>

used in (Hiller et al., 2009) considers substitutions between %5) of which 1,521 (0.5%) exons were confirmed by ESTs
. , 0% .

reference and orthologous sequences for each alignment colu .
(Fig. 2B). This can over- or underestimate the real number me purpose of the second SVM (exon-SVM) is to rank these

substitutions that happened in evolution. In particular, if a strictlypre“mWjlry candidates. Trained on a subset of most reliably EST-

. -~ confirmed exons (334/1,521), the SVM achieved an AUC of 0.92
conserved base has changed in the reference sequence, the pairw

e » ! .
method will sum the log-odd scores for all pairs reference-orthologsé'?' 1?)' I: alldtqlr|]t|on,f vge?)\ézh?atcled Lhde fir;cz)rrpal ncfeson a d|frf]erent
although only a single change has happened. To avoid these biasgﬁ ~Sel consisting ot 5, eal and &, €q exons

ose splice sites were correctly classified by the splice site SVM

we developed a method that evaluates species- and site-specim:

substitution patterns along the phylogeny of the aligned specie Tflchafv% ggt k')fensu; ed .];?]r tr?_lglgg.f;ﬁtgo 07‘522'; ; b;ggnednzn
(Fig. 2C). We reconstructed the likely ancestral bases at eac of 0.88 (Fig. S7) with a 0 47, 262/9,333) a

0, i I 0,
internal node in the phylogenetic tree. This allowed us to computea F5P2F§ (;f ;.;3/0(_5'%7'?/45;22)1.0/Ag$ 4>7(2)'29 vl\éilitm\/\(/):tzmeliijiir{z
log-odd scores that only consider real substitutions. Ourtree-base@” n S/VI’\M )th remainin o n/ 7nd'c)i ¢ t'h t rppn i d for
approach let to a noticeable performance increase compared fgon- ' to the remaining exon candidates that were not used fo

L . . . training. Finally, 8,832 candidate exons were predicted to be real at
the pairwise method, in particular for low FPRs. Measuring the

confidencep > 0.5 (898 exons ap > 0.9).
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A) Alignment B) Pairwise substitutions D) ROC analyses

evaluate substitution patterns "human versus other species"
example: column -5 TCTCTTTCCCCCCCTCTACTC o donor

intron Gl Ml f f f ﬁfﬁﬁ?ﬁ f Af f (13 substitutions) ®© - AUC:
RCCCTGCACTTCCTTCCTARA Human Contribution to spair: [8:08) = (lf;*écg’;?‘ﬁ){ztx, score(m 8§31 072
TCCCTGCACTTCCTTCCTAGA Marmoset ’ : R
CCCGTGTGTTTCCTCCCCAGA Lemur gL/
GCCTCGTGTTTCCTTCCCAGA Bushbaby , , . 831/ 4
CToCTGCACTTCCTCCGCAGA Tree shrew  C) SUDSTItUtions along the phylogenetic tree s ||/0-68
TTTTTTTATTTTCTTGCCAGA Mouse Contribution to Stree: = 2x score(CT) = Z = Spair
CCTCCTTATTTCCTTGCTAGA Rat + 5x score(TC) s ; ; ; ; ;
TCCCTGTACTTCCTTCCCAGA Squirrel + 1x score(TA) 00 02 04 06 08 1.0
TCCCCGCCTCTCCTCCGCAGA Alpaca (8 substitutions) False positive rate
TCCCCGCCTCTCCTCTGCAGA Dolphin
TCCTCGTGCTTCCTCCCCAGA Horse %\ o acceptor
TCTTGGCGCTTCCTCCCCAGA cat o | 098 —
TCCTGGTGCTTCCTCCTCAGA Dog T 2
CTCCCCGCCTTCCTCCCCAGA Megabat | o[
CCCTTGTGCTTCTTCCCCAGA Hedgehog £°11/0.85
CCCTTGCGCTGCCCTCCCAGA Elephant ® S 3|
TCCTTGTGTCTGTTCCCCAGA Rock Hyrax 2 m s 2y Stree
GCCTCCCTGCGCTCTCCCAGG Armadillo . I k) 3 Eo
TCCCTGCGCTTCCTACCTAGA Sloth 3 = 92 352% %o o
GTTTTGTGCTTCCCCTCTAGA Opossum = 3 Fs 35 * "2 3 HE %0 0% on ok o8 1o
TTCCCTGGGTTCCCTTCTAGA Platypus f 35 ® =533 T " Faseposiverate
CCCCCTCCCCGTCTCTGCAGA Medaka 3= negative score - § g e g g g § g

g e " 5

moa

Fig. 2. Log-odds substitution scoresGiven an exemplary acceptor alignment (A), we compare the pairwise (B) and the tree-based (C) approach to scog

splice site substitutions, here focusing on substitutions at alignment column -5. While the pairwise method evaluates 13 substitutions (B), the tree-based
method considers only eight that likely happened along the phylogenetic tree (C). The leaves of the tree represent the sequences of extant species, inner?"gwod(
reflect the reconstructed ancestral state. Substitutions with positive log-odd scores happen more frequently in the evolution of real than false splice sitesg (D)
ROC curves demonstrate that the tree-based methegl.] significantly outperforms the pairwise methag,{;,-) for both donor and acceptor sites. g

Confirmation by RNA-seq data and recd®ef Seq annotations.  optimized for specificity not sensitivity and is likely to miss other
The RNA-seq data published by Wang et al. (2008) provide evidencexons belonging to the same transcript. Third, IncRNAs have fewer
for transcription of 5 %469/8, 832) of predicted exons (Tab. S10). exons than coding genes, decreasing the chance to detect clusters.
To test if deeper sequencing might confirm more exon predictionsFinally, our cut-off for the maximum intron length of 6 kb prevents
we used only a fraction of their data for validation. We observed thathe detection of clusters for transcripts having longer introns.

the number of confirmed exons increases linearly with the fraction To assess if the number of 336 clusters is higher than expected by
of RNA-seq reads without saturation (Fig. 3, S9), which suggestshance, we used a simulation that builds exon clusters from an equal
that additional data is likely to verify additional predictions. number of exons receiving low SVM confidence scopes(0.5).

To evaluate tissue specific expression, we found that only 14 oRunning the simulation 10,000 times, we never obtained 336 or
the 469 exons confirmed by RNA-seq are supported by reads frommore clusters, yielding an empiricBlvalue < 10~°. Remarkably,
at least 10 of the 15 tissues/cell-lines. 281 exons are only supportetiis remains true when empiricBlvalues are computed separately
by reads from a single tissue. This clearly indicates tissue-specififor clusters with cardinalities between two and seven exons. The
transcription of these genes, in agreement with previous findingpredicted exons thus have a strong tendency to form potential multi-
from Wang et al. (2008). exon transcripts, which makes them good candidates for novel

The human gene catalogue is continuously updated and refineg@rotein-coding genes and IncRNAs.

Therefore, we expect that some of our predictions unknown at the The 336 clusters contain 505 exon-exon junctions of which
time we made them are now validated by new annotations. IndeedRNA-seq reads (Wang et al., 2008) verified 46 (9%). Interestingly,
44 of our predicted and previously unknown exons have meanwhil@9% of the predicted exons in clusters are independently predicted
been included in th&®ef Seq transcript annotation. For example, by coding gene finders, indicating that they are part of multi-
a complete predicted cluster consisting of five exons is now part oéxon coding genes (Tab. S9). For all predicted exons that do not
the official consensus gene structure of EeBgene (Fig. S8). cluster 7.5% are predicted by coding gene finders, which can be
Predicted exons form potential multi-exon transcri®6 (734 due to a higher false positive rate in these.exons but also the
of 8.832) of the predicted exons form 336 clusters (2' exons fact that IncRNAs have _fewer exons than _codlng genes (_Gl_Jttman

’ P - = et al., 2010). The latter in particular complicates the prediction of
separated by at most 6 kb). With up to seven adjacent exons, theﬁﬁcRNAs which on average have only 1.7 internal exons
clusters are parts of potential multi-exon transcripts. ' '

The remaining 8,098 exons that are not in clusters might stillPredicted exons are mostly non-protein-coding and unstructured.
belong to multi-exon transcripts for the following reasons. First,Only 8% (674 of 8,832) of predicted exons have homology to
our approach can only detect internal exons that are flanked by protein-coding genes, 40 % (3,508 of 8,832) have stop-codons in
donor and acceptor site. In particular, the first exon (lacking arall three reading frames, and 92 % (8,124 of 8,832) are classified as
acceptor) and the last exon (lacking a donor) cannot be detectedon-coding byRNAcode (Washietl etal., 2011). This shows that the
which means that only genes with at least four exons (containing agreat majority (89 % or 7,894) of predicted exons and exon-clusters
least two internal exons) can form clusters. Second, our method i6241/336) is likely non-coding.
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T a novel log-odds score for splice site substitutions that explicitly

% 1 ( i takes the phylogenetic tree into account, avoiding biases of previous
£ 8 approaches. We show that this tree-based method substantially
5 J improves the power of splice site detection and outperforms two
28 [ other approaches. The general concept behind this tree-based
§ ] \ method can be applied to detect other biologically relevant signals

and motifs in multiple sequence alignments.

Our predicted exons and exon clusters mostly belong to non-
coding transcripts. These transcripts also rarely contain conserved
) ) o ] o secondary structures. This means that current methods to find
Fig. 3. 'Deeper sequencing will likely confirm further exon.p'redlctlons. coding genes or structured ncRNAs will miss most of our
We split the data of Wang et al. (2008) to subsets containing 25%, 50% L i
and 75% of all reads and computed the corresponding number of com‘irme@re(.jlctlonS and that our approach compleme.nts existing methods.

: - P . High-throughput transcriptome sequencing has led to the

exons. We repeated this procedure five times to avoid biases of a single, g ghp p q 9 .

random split. Error bars show the minimum and maximum of the five discovery of many unknown exons and transcripts. However, for

iterations. Since the number of confirmed exons increases almost linearifhe following reasons we believe thab initio computational

with the number of reads, it is likely that future sequencing projects will predictions of conserved transcripts complement experimental

provide further experimental evidence for our approach. approaches. First, tissue-specific transcripts can only be detected
when a large variety of conditions such as cell types, tissues,
time points is sampled. Second, detecting transcripts with low

We foundRNAz hits in only 1.2% (94 of 7,894) of the non-coding expression levels requires sufficiently deep sequencing. These §
exons. This fraction is not higher than for coding exons (1.7%, 16 ofimitations are particularly relevant for ncRNAs, which often
938). Furthermore, only 7% (35 of 505) of the predicted exon-exorhave low and highly specific expression patterns (Ravasi et al.,
junctions and 14% (46 of 336) of all exon clusters contaitAz 2006; Mercer et al., 2008). Consistent with this and the fact
hits. This indicates that our predicted loci are mostly unstructuredhat our predictions are mostly non-coding, we observed that
or do not contain conserved secondary structures and consequenttyore transcript data leads to the confirmation of more predictions
cannot be detected by structure-based ncRNA finders. without any observable saturation. Furthermore, our predictions
confirmed by transcriptome sequencing data mostly have tissue-
specific expression patterns. While our predictions will inevitably
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percentage of RNA-seq data
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Experimental validation of a predicted multi-exon transcript.

Clusters of predicted exons with highest cardinality are prime . i . .

. . .“contain false positives, these observations suggest the existence o
candidates for novel genes. Our data contain two such top-scorin . . - ) :
rther evolutionarily conserved, and hence likely functional, multi-

clusters, each consisting of seven adjacent exons (Fig. 4A,B). Thgxon transcripts that still remain hidden in the human genome
first cluster is confirmed by ESTs and, accordingBbASTX, P 9 )

. . - Future increases in transcriptome sequencing depth and breadth
likely protein-coding. The second cluster has RNA-seq support for . ) e np q 9 dep ;

. : . : will confirm additional predictions. Also, our exon and transcript
only one exon-exon junction. Therefore, we designed primers tq

. . . -~ " prediction n incl in ongoing large-scale RT-PCR
positions in the human genome that allow to verify the remalnlngp edictions can be included in ongoing large-scale CR based

predicted transcript. We used RT-PCR in a human prostate canc eg(o)rﬁt;s g)u:u;thergggl]ldcits] r;lejmgztsggi]heefri?:ecn?re](sjic(:?c?r:rz(a)w fc:ailﬁ’es
cell line and subsequent cDNA sequencing. This confirmed eigh : P P g P PP

of the nine predicted splice sites and three of five predicteaand contributes to completing the catalog of human transcripts.

exons (Fig. 4C). Furthermore, our experiments revealed complex

alternative splicing at this locus with five different isoforms in

prostate cancer cells. These contain even additional novel exoné}VAlLABILITY

neither detected by existing methods nor our current approach.  Predicted human splice sites, exons, and gene structures together
with a Perl implementation of the tree-based log-odds scoring and
a supplemental PDF file containing additional figures and tables

4 DISCUSSION are available athtt p: // waww. bi oi nf. uni - | ei pzi g. de/

We present a computational procedure to identify novel s IicedDUbI I cations/suppl ement s/ 10- 010.
P P P P The five experimentally confirmed partial transcript isoforms

transcripts in vertebrate genomes using conserved splice sites and . . .

. . : ﬁave been deposited in GenBank under accession numbers
signatures of length-constrained exons. We deliberately negle(i_|

; . . ) M687422- HVB87426.

features of protein-coding genes and outline a first conceptual
approach towards thae-novaoprediction of long non-coding RNAs.
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for the prediction of conserved, and hence likely functional,ACKNOWLEDGMENT
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Fig. 4. Examples of multi-exon transcripts. (A) A cluster consisting of seven exons supported by ESTs. (B) RT-PCR followed by sequencing cloned
isoforms verified another predicted transcript (only five of seven exons are shown). We sequenced seven transcripts with a total of ten splice sites at this locus.
Eight of these ten splice sites are predicted (black arrows) and missed two (dashed arrows). Within the range of the RT-PCR primers, eight of nine predicted
splice sites and both splice sites for three of five predicted exons are verified. (C) Gel electrophoresis shows several bands indicating the spliced isoforms
(cDNA) depicted in (B) as well as the genomic DNA (control). The observed transcripts are shorter than the corresponding genomic interval due to splicing.
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