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ABSTRACT
Motivation: Long non-coding RNAs (lncRNAs) resemble protein-
coding mRNAs but do not encode proteins. Most lncRNAs are
under lower sequence constraints than protein-coding genes and
lack conserved secondary structures, making it hard to predict them
computationally.
Results: We introduce an approach to predict spliced lncRNAs in
vertebrate genomes combining comparative genomics and machine
learning. It is based on detecting signatures of characteristic
splice site evolution in vertebrate whole genome alignments. First,
we predict individual splice sites, then assemble compatible sites
into exon candidates, and finally predict multi-exon transcripts.
Using a novel method to evaluate typical splice site substitution
patterns that explicitly takes the species phylogeny into account,
we show that individual splice sites can be accurately predicted.
Since our approach relies only on predicted splice sites, it can
uncover both coding and non-coding exons. We show that our
predicted exons and partial transcripts are mostly non-coding
and lack conserved secondary structures. These exons are of
particular interest, since existing computational approaches cannot
detect them. Transcriptome sequencing data indicate tissue-specific
expression patterns of predicted exons and there is evidence that
increasing sequencing depth and breadth will validate additional
predictions. We also found a significant enrichment of predicted exons
that form multi-exon transcript parts, and we experimentally validate
such a novel multi-exon gene. Overall, we obtain 336 novel multi-exon
transcript predictions from human intergenic regions.

Our results indicate the existence of novel human transcripts that
are conserved in evolution and our approach contributes to the
completion of the human transcript catalog.
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Availability and Implementation: A Perl implementation of the tree-
based log-odds scoring is available online (see supplement).
Contact: dominic@bioinf.uni-leipzig.de
Supplementary Information: http://www.bioinf.uni-leipzig.
de/publications/supplements/10-010

1 INTRODUCTION
A series of high-throughput transcriptomics studies utilizing a
variety of different technologies revealed that mammalian genomes
are pervasively transcribed into a complex mosaic of transcripts
(Carninci et al., 2005; ENCODE Project Consortium, 2007;
Kapranov et al., 2007a,b). A large extent of these transcripts consists
of small and long non-protein-coding RNAs (ncRNAs). Due to
the diverse nature of these transcripts our catalog of genes is still
incomplete.

Computational prediction of protein-coding genes is based on
characteristic features of coding regions that distinguish them
from non-coding DNA (Burge and Karlin, 1997; Cruveiller et al.,
2003). Coding genes exhibit a clear evolutionary signature, since
mutations are often synonymous and preserve the reading frame.
These signals can be exploited to find coding genes by comparative
genomics methods (Solovyev et al., 2006; Stark et al., 2007).
Also machine learning based approaches that recognize splice
sites, transcriptional and translational start and stop signals can
successfully detect coding genes (Stanke and Waack, 2003; Gross
et al., 2007; Schweikert et al., 2009).

In contrast to protein-coding genes, ncRNAs form a heterogeneous
class of transcripts that lacks common sequence patterns,
complicating their detection in genomic DNA. Some ncRNA
classes, including common families like rRNAs, tRNAs and
miRNAs, preserve their characteristic secondary structure during
evolution, guiding a computational predicton (Washietl et al., 2005;
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Nawrocki et al., 2009). However, many other ncRNAs exhibit
neither conserved secondary structures nor sequence conservation
levels as high as coding exons (Pang et al., 2006; Ponjavic et al.,
2007), making it hard to find them computationally. Many long
non-coding RNAs (lncRNAs) resemble protein-coding mRNAs in
that they are often capped, spliced, and polyadenylated. They can
exhibit cell type-specific expression, are known to be involved in
transcriptional regulation, epigenetics, gene silencing, imprinting,
and are known to play a major role in some human diseases
(Mercer et al., 2009; Ponting et al., 2009; Wilusz et al., 2009;
Huarte and Rinn, 2010). Examples includeXIST which is involved
in mammalian female X chromosome inactivation and dosage
compensation (Senner and Brockdorff, 2009),MALAT1 which
affects the expression of genes controlling synapse formation
(Bernard et al., 2010), andNRON which regulates nuclear
trafficking by repressing the nuclear factor of activated T cells
(Willingham et al., 2005).

We recently presented a computational approach to detect
lncRNAs with conserved intron positions in insect genomes (Hiller
et al., 2009). This approach is solely based on a genomic screen for
regions that evolve like introns, exploiting that the intron boundaries
(splice sites) are well conserved and under purifying selection in
both coding and non-coding genes (Rodrı́guez-Trelles et al., 2006;
Ponjavic et al., 2007; Chodroff et al., 2010). The approach crucially
relied on predicting introns as a single unit, which means pairs of
splice donor (5’) and acceptor (3’) sites are predicted in a single
step. This strategy works in insect genomes where introns are
very short (according to Lim and Burge (2001) most are<100 nt
in Drosophila melanogaster). In contrast, vertebrate introns are
substantially longer and more variable in their length, preventing
the application of this intron-based method.

Here, we introduce a novel approach tode novopredict spliced
transcripts in intergenic regions of vertebrate genomes. Using a
combination of comparative genomics and machine learning, we
first predict new splice donor and acceptor sites in whole genomes
and subsequently assemble them into exon predictions. Applying
this approach to an alignment of 44 vertebrate genomes, we predict
previously unreported coding and non-coding transcripts with
conserved exon/intron structures in the well characterized human
genome and validate these predictions with available transcript data
and own experiments.

2 METHODS
Input data.Our analysis is based on the multiple alignment of 44 vertebrate
genomes with the human hg18 assembly as the reference downloaded from
the UCSC Genome Browser (Rhead et al., 2010).

De novo splice site prediction.We trained support vector machines (SVMs)
to solve the binary classification problem ofde novosplice site prediction
comprising the following steps: (i) detect donor and acceptor splice site
candidates in multiple sequence alignments, (ii) train splice site SVMs with
features capturing patterns of splice site evolution, (iii) use the SVM to score
candidate splice sites.

To this end, we screened the genome alignment of genic regions for
donor and acceptor candidates and divided them into real splice sites
that are annotated (>208,000 true positives) and false positives that are
not supported by available transcript data (∼12.6 million). To perform
supervised machine learning, we compiled three disjoint sets: (i) positive
and (ii) negative samples to train and test individual donor and acceptor

SVM models and (iii) a set of intergenic candidate sites forming the search
space for putative novel splice sites. The positive set contained the splice
sites of theUCSC, RefSeq, and theHuman mRNA gene tracks. Negative
training data were the remaining genic sites (unannotated sites within
introns, exons, or untranslated regions (UTRs)). We considered GT (donor)
and AG (acceptor) dinucleotides (both strands) which were conserved in at
least five species. Alignment blocks had to contain the intervals[−3, 6] for
donors and[−19, 2] for acceptors (Fig. S3). To avoid obvious false positives,
sites with aMaxEntScan (Yeo and Burge, 2004) score< 0 were discarded
(Fig. S4). We only considered canonical (GT/AG) splice sites.

We generated five representative sample sets to efficiently train/test donor-
/acceptor SVMs (LIBSVM (Chang and Lin, 2001), rbf-kernel, default
parameters). Each training-set consisted of 100,000 randomly chosen sites
(50,000 positives and 50,000 negatives) and 10,000 independent instances to
test the resulting models (5,000 positives and 5,000 negatives). We evaluated
SVM performances by comparing receiver operating characteristics (ROC)
and the area under the ROC curve (AUC), see Fig. 1. Observed AUC values
were nearly identical among all sets, demonstrating that random sampling
did not bias our data. We kept the best performing 5’ and 3’ splice site
models and classified the broad set of intergenic candidates (∼54 million)
to identify novel splice sites.

The splice site classification was based upon the following eight features:
(1) humanMaxEntScan splice site score; (2-4) log-odds substitution
scoresstree, spair, smedian; (5) number of species in the alignment;
(6) number of species with conserved GT/AG dinucleotides and a positive
MaxEntScan score; (7) slope of a regression line fitted to thePhastCons
conservation profile of the splice site; (8) averagePhastCons score.

The MaxEntScan program (Yeo and Burge, 2004) scores splice site
sequences for similarity to typical splice sites. Overall, real splice sites have
higher scores than false positives (Fig. S4). Next, we computed log-odds
scores to capture intrinsic sequence evolution of splice sites (see also next
paragraph). Splice sites are usually highly conserved at the sequence level.
Therefore, we included the total number of species per alignment and the
number of species with a conserved GT (for donors) and AG (for acceptors)
as SVM features. The average sequence conservation significantly decreases
at the exon-intron boundary and increases at the intron-exon boundary, see
also (Chodroff et al., 2010). On average, the splice sites are even more
conserved than the adjacent exons (Fig. S3B). This holds for protein-coding
as well as non-coding genes. The slope of a linear regression line fitted to
thePhastCons (Siepel et al., 2005) profile of the region [-20,+20] for each
splice site captures this information. Figure S5 shows the score distributions
and discriminative power of the individual features.

Log-odds substitution scores.We computed three variants of species- and
site-specific substitution scores (stree, spair, andsmedian) based on the
substitution frequencies in real and false splice sites. These log-odds capture
splice site evolution among species (Fig. 2) and the score is> 0 if the region
of interest conforms to real splice site evolution and< 0 otherwise. The
more substitutions are consistent with splice site evolution, the higher is the
total score. We evaluated the donor region [-3,6] and the acceptor region
[-19,2] for all three score variants.

To compute scorestree, we reconstructed ancestral sequences for each
splice site region usingprequel (Siepel et al., 2005). It computes marginal
probability distributions for bases at ancestral nodes in a phylogenetic tree.
For each edgee of the reconstructed binary tree and for each sitei of each
two related sequences, we computed the frequencyf i of substitutions of
nucleotidexi to nucleotideyi for each position in the splice site region
(x 6= y andx, y ∈ Σ,Σ = {A,C,G, T}). We tabulated the log-odds ratio
of the total number of pairwise substitutions observed between all positive
and negative training samples. Given a set of sequences, the sum of all log-
odds of all observed substitution events along each edge of the reconstructed
phylogenetic tree is

stree =
∑

e

∑

i

log2

(

f i
pos(x → y)/

∑

n∈Σ
f i
pos(x → n)

f i
neg(x → y)/

∑

n∈Σ
f i
neg(x → n)

)

. (1)
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The log-odds substitution scorespair was previously used in (Hiller et al.,
2009). We counted substitution frequencies of each splice site position of
human against each other species, learned the log-odds ratio of positive and
negative samples, and scored intergenic candidates with the sum of observed
log-odds.

Scoresmedian was inspired by the CSF-metric for codon substitution
frequencies (Stark et al., 2007). Similarly tospair, we summed up log-
odds for each splice site position, but took the median instead of totaling
the position-specific scores. Since SVM training- and test-sets have to be
independent (disjoint), log-odds substitution scores were always learned on
training-sets, never on test-sets.

Exon prediction.Searching for short splice site signatures in the huge
intergenic space is expected to yield false positives, even at high
classification confidence values. However, exons as biologically meaningful
units consist of an acceptor-donor pair in close proximity. To find parts of
novel transcripts (exons) and to reduce false positives, we derived candidate
exons from individually predicted splice sites by searching for acceptor-
donor pairs on the same DNA strand separated by not more than 300 nt. This
is a natural cut-off since 85 % of allRefSeq exons are shorter than 300 nt
(and still 80 % of all non-coding exons).

To predict novel exons in intergenic regions, we evaluated all candidate
exons using a second SVM (exon-SVM) that was trained on characteristic
signatures of transcript-confirmed exons.

Each internal exon of a multi-exon transcript is flanked by an upstream
acceptor and a downstream donor. Conservation of such an exon implies
compatible acceptor-donor pairs present in many species. To capture the
conservation and the compatibility of the particular acceptor-donor pair, we
considered the absolute number and the fraction of species having both a
conserved acceptor and donor as two SVM features. Other features were
the previously assigned class-probabilities of the splice site SVM and the
distance between particular splice site pairs. The exon-SVM was trained
with six features: (1-2) acceptor and donor SVM classification probability;
(3) exon length; (4) number of species that have conservation for both splice
sites; (5) fraction of (4) and the number of species with conserved AG in
the acceptor alignment; (6) fraction of (4) and the number of species with
conserved GT in the donor alignment.

To train this exon-SVM we obtained a set of real exons by requiring that
both splice sites are (i) not annotated as part of a pseudogene (according
to theYale and theUCSC browser tracks), (ii) evolutionary conserved in
the same species (at least five), and (iii) confirmed by≥ 2 spliced ESTs
as well as≥ 20% of all spliced ESTs present at the particular locus. This
was fulfilled for 334 (22 % of 1,521) EST-confirmed exons. The stringent
filtering assures that we exclude cases of transcriptional noise and use only
high-quality true positives during training. We randomly selected 284 of the
334 exons for training and used the remaining 50 to evaluate the SVM. Then,
1,000 EST-unconfirmed exons were randomly selected and 900 of these were
used as negative training examples and the remaining 100 for evaluation.
We repeated this procedure ten times, kept the best performing model with
respect to sensitivity and specificity, and classified the whole exon candidate
pool to detect exons that exhibit signatures specific to EST-confirmed loci.

Candidate gene structures.Most coding genes and lncRNAs consist of
several exons and introns. If the predicted exons are real and belong to multi-
exon genes, we expect that they have a tendency to cluster spatially within
the genome. Human introns have a mean length of 6 kb which we used as a
cut-off to define genomic clusters of predicted exons.

We performed a simulation test to determine whether predicted clusters
(defined here as≥ 2 exons separated by at most 6 kb on the same strand)
occur more often than expected. To generate a background distribution,
we selected as many rejected exons (p ≤ 0.5) as we observed positively
classified clustered exons (p > 0.5) and counted the number of (random)
clusters. Repeating this sampling procedure 10,000 times yields empiricalP-
values which indicate the statistical significance of predicted exon clusters.

In case of overlapping exons, one representative according to the highest
SVM probability was selected to generate non-overlapping gene structures.

Coding vs. non-coding exons.Exons without protein homology (using
BLASTX against the NCBI nr database with -e 1e-5, -F F, -S 1) and no
protein-coding potential as predicted byRNAcode (Washietl et al., 2011) (-b
-r -s -p 0.01) were classified as “non-coding”. In addition, exons containing
stop-codons in all three reading frames were classified as “non-coding”.

Secondary structures.We appliedRNAz (Washietl et al., 2005) with default
parameters (window size 120 nt, step width 40 nt) to search for signatures of
conserved and stable RNA secondary structures in alignments of predicted
exons and alignments covering possible exon-exon junctions. For the latter,
we concatenated 60 nt up- and downstream of the predicted intron using
the Galaxy Browser (Goecks et al., 2010). These 120 nt regions mimic
alignments of the mature transcript and were scored byRNAz to identify
possible structures formed by long-range basepairs.

RNA-seq data.Transcription of predicted exons was validated by RNA-seq
data from Wang et al. (2008). We basically relied to their mappings, but
re-mapped their short read data to confirm additional exon-exon junctions.
For each predicted intron, we concatenated 26 nt of the predicted trailing
exons and built 52 nt long putative mature mRNA fragments. We performed
a BLASTN search of all 32 nt long reads against this database. Short reads
producing nearly perfect BLAST hits (≥30 nt in length,≤2 mismatches,
≥3 read coverage) spanning the 52 nt exon-exon-junction support our
predicted splice-junctions whenever they lack a better hit to other loci in the
genome. Apart from 37 exon-exon-junctions that were directly verified by
the annotations of Wang et al. (2008), this procedure additionally confirmed
nine previously unreported exon-exon junctions.

Experimental validation.To experimentally verify a prime multi-exon
transcript candidate we designed primers to the predicted exonic regions in
the human genome usingPrimer3 (v0.4.0, default parameters). Primer
sequences: fwd 5’-gcagtgcagaatggcaagt-3’; rev 5’-gcctcagcatattcatctcca-
3’. Total RNA from LNCaP and RWPE-1 cells (human prostate
cancer cells) was extracted using TRIZOLTM reagent according to the
manufacturers instructions (Invitrogen). To eliminate genomic DNA, a
DNase digestion was performed using the TURBO DNA-freeTM Kit
(Applied Biosystems/Ambion, manufacturers instructions). Next,1µg
of total RNA was reverse transcribed with SuperScriptTM III Reverse
Transcriptase (Invitrogen). Genomic DNA was isolated using DNeasy Blood
& Tissue Kit (Qiagen). PCR reactions were performed using Taq-DNA-
Polymerase (NEB) in a30µl reaction containing1µl cDNA or genomic
DNA. PCR products were analyzed on 1.5 % agarose gels, extracted from
the gel using the MinElute Gel extraction Kit (Qiagen), cloned using TOPO
TA CloningR (Invitrogen) and sent out for sequencing (Seqlab).

3 RESULTS
De novo splice site prediction.As illustrated in Fig. 1, we trained
SVM classifier using the evolutionary signatures of vertebrate splice
sites to distinguish real from false splice sites. Indicating a good
discriminative power, our models achieved high AUC values of 0.96
for donors and 0.94 for acceptors (Fig. 1A). On an independent test-
set with 5,000 sites which were not used for training, we correctly
detected 89 % of all true donors at a false positive rate (FPR) of 4 %
and 84 % of all true acceptors at a FPR of 9 % (SVM classification
confidencep > 0.5). To reduce the FPR to less than 2 %, we used
a more stringent SVM classification confidence ofp > 0.9, which
still correctly identifies 81 % (73 %) of real donor (acceptor) sites.
This demonstrates that our approach is capable of identifying splice
sites at high specificity. Out of 54 million intergenic candidates,
about 3.4 million sites were predicted to be real (p > 0.5).
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Fig. 1. Overview on the computational procedure to identify novel spliced transcripts in vertebrate genomes.(A) First, we extracted splice site
candidates from genome-wide alignments and set up a training set (left panel). We distinguished between (i) real annotated splice sites in genic regions,
(ii) false splice sites in genic regions (GT/AG dinucleotides that were similar to real splice sites but were not supported by transcript data), and (iii) the
remaining set of intergenic splice site candidates. Second, we compiled a set of evolutionary signatures that are characteristic for vertebrate splice sites and
trained donor and acceptor SVM models (middle panel, ROC curves are shown for both models). Thirdly, these SVMs were used to classify intergenic
candidates as either real or false splice sites (right panel). (B) To obtain exon predictions, we searched for pairs of splice sites with a maximal distance of
300 nt (left), trained a second SVM that considered features of EST-confirmed exons (middle) and ranked predicted exons. Finally, predicted exons were then
clustered into partial multi-exon transcripts. (C) Several splice sites and exons/introns of the shown example are confirmed by ESTs and short RNA-seq reads.

Improved log-odds substitution scores.Nucleotide substitutions in
splice sites are highly biased to certain substitution patterns that
follow the splice site consensus sequence (Fig. S2, S3A). This
holds for protein-coding as well as non-coding genes (Fig. S2).
For example, A and G are the preferred nucleotides at the donor
consensus position+3 and A/G substitutions are the most frequent
substitution at this position in real donors. The pairwise approach
used in (Hiller et al., 2009) considers substitutions between a
reference and orthologous sequences for each alignment column
(Fig. 2B). This can over- or underestimate the real number of
substitutions that happened in evolution. In particular, if a strictly
conserved base has changed in the reference sequence, the pairwise
method will sum the log-odd scores for all pairs reference-ortholog,
although only a single change has happened. To avoid these biases
we developed a method that evaluates species- and site-specific
substitution patterns along the phylogeny of the aligned species
(Fig. 2C). We reconstructed the likely ancestral bases at each
internal node in the phylogenetic tree. This allowed us to compute
log-odd scores that only consider real substitutions. Our tree-based
approach let to a noticeable performance increase compared to
the pairwise method, in particular for low FPRs. Measuring the

predictive power of either method alone, the AUC improved from
0.68 to 0.72 for donor and from 0.85 to 0.93 for acceptor sites
(Fig. 2D). Acceptors, for which we score a longer region that
comprises the poly-pyrimidine tract, particularly benefit from this
novel scoring scheme.

Prediction of exons based on individual splice sites.We obtained
311,616 candidate exons fromde novopredicted splice sites (p >
0.5) of which 1,521 (0.5 %) exons were confirmed by ESTs.
The purpose of the second SVM (exon-SVM) is to rank these
preliminary candidates. Trained on a subset of most reliably EST-
confirmed exons (334/1,521), the SVM achieved an AUC of 0.92
(Fig. 1B). In addition, we validated the performance on a different
test-set consisting of 9,333 real and 4,722 falseRefSeq exons
whose splice sites were correctly classified by the splice site SVM
and have not been used for training. Atp > 0.5 we obtained an
AUC of 0.88 (Fig. S7) with a TPR of 78%(7, 262/9, 333) and
a FPR of 11%(537/4, 722). At p > 0.9 we still obtained 38%
(3, 528/9, 333) TPR and 1%(57/4, 722) FPR. We applied the
exon-SVM to the remaining exon candidates that were not used for
training. Finally, 8,832 candidate exons were predicted to be real at
confidencep > 0.5 (898 exons atp > 0.9).
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Fig. 2. Log-odds substitution scores.Given an exemplary acceptor alignment (A), we compare the pairwise (B) and the tree-based (C) approach to score
splice site substitutions, here focusing on substitutions at alignment column -5. While the pairwise method evaluates 13 substitutions (B), the tree-based
method considers only eight that likely happened along the phylogenetic tree (C). The leaves of the tree represent the sequences of extant species, inner nodes
reflect the reconstructed ancestral state. Substitutions with positive log-odd scores happen more frequently in the evolution of real than false splice sites. (D)
ROC curves demonstrate that the tree-based method (stree) significantly outperforms the pairwise method (spair) for both donor and acceptor sites.

Confirmation by RNA-seq data and recentRefSeq annotations.
The RNA-seq data published by Wang et al. (2008) provide evidence
for transcription of 5 %(469/8, 832) of predicted exons (Tab. S10).
To test if deeper sequencing might confirm more exon predictions,
we used only a fraction of their data for validation. We observed that
the number of confirmed exons increases linearly with the fraction
of RNA-seq reads without saturation (Fig. 3, S9), which suggests
that additional data is likely to verify additional predictions.

To evaluate tissue specific expression, we found that only 14 of
the 469 exons confirmed by RNA-seq are supported by reads from
at least 10 of the 15 tissues/cell-lines. 281 exons are only supported
by reads from a single tissue. This clearly indicates tissue-specific
transcription of these genes, in agreement with previous findings
from Wang et al. (2008).

The human gene catalogue is continuously updated and refined.
Therefore, we expect that some of our predictions unknown at the
time we made them are now validated by new annotations. Indeed,
44 of our predicted and previously unknown exons have meanwhile
been included in theRefSeq transcript annotation. For example,
a complete predicted cluster consisting of five exons is now part of
the official consensus gene structure of theNEBgene (Fig. S8).

Predicted exons form potential multi-exon transcripts.8 % (734
of 8, 832) of the predicted exons form 336 clusters (≥ 2 exons
separated by at most 6 kb). With up to seven adjacent exons, these
clusters are parts of potential multi-exon transcripts.

The remaining 8,098 exons that are not in clusters might still
belong to multi-exon transcripts for the following reasons. First,
our approach can only detect internal exons that are flanked by a
donor and acceptor site. In particular, the first exon (lacking an
acceptor) and the last exon (lacking a donor) cannot be detected,
which means that only genes with at least four exons (containing at
least two internal exons) can form clusters. Second, our method is

optimized for specificity not sensitivity and is likely to miss other
exons belonging to the same transcript. Third, lncRNAs have fewer
exons than coding genes, decreasing the chance to detect clusters.
Finally, our cut-off for the maximum intron length of 6 kb prevents
the detection of clusters for transcripts having longer introns.

To assess if the number of 336 clusters is higher than expected by
chance, we used a simulation that builds exon clusters from an equal
number of exons receiving low SVM confidence scores (p < 0.5).
Running the simulation 10,000 times, we never obtained 336 or
more clusters, yielding an empiricalP-value< 10−5. Remarkably,
this remains true when empiricalP-values are computed separately
for clusters with cardinalities between two and seven exons. The
predicted exons thus have a strong tendency to form potential multi-
exon transcripts, which makes them good candidates for novel
protein-coding genes and lncRNAs.

The 336 clusters contain 505 exon-exon junctions of which
RNA-seq reads (Wang et al., 2008) verified 46 (9%). Interestingly,
29% of the predicted exons in clusters are independently predicted
by coding gene finders, indicating that they are part of multi-
exon coding genes (Tab. S9). For all predicted exons that do not
cluster 7.5% are predicted by coding gene finders, which can be
due to a higher false positive rate in these exons but also the
fact that lncRNAs have fewer exons than coding genes (Guttman
et al., 2010). The latter in particular complicates the prediction of
lincRNAs which on average have only 1.7 internal exons.

Predicted exons are mostly non-protein-coding and unstructured.
Only 8 % (674 of 8,832) of predicted exons have homology to
protein-coding genes, 40 % (3,508 of 8,832) have stop-codons in
all three reading frames, and 92 % (8,124 of 8,832) are classified as
non-coding byRNAcode (Washietl et al., 2011). This shows that the
great majority (89 % or 7,894) of predicted exons and exon-clusters
(241/336) is likely non-coding.
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Fig. 3. Deeper sequencing will likely confirm further exon predictions.
We split the data of Wang et al. (2008) to subsets containing 25%, 50%,
and 75% of all reads and computed the corresponding number of confirmed
exons. We repeated this procedure five times to avoid biases of a single
random split. Error bars show the minimum and maximum of the five
iterations. Since the number of confirmed exons increases almost linearly
with the number of reads, it is likely that future sequencing projects will
provide further experimental evidence for our approach.

We foundRNAz hits in only 1.2% (94 of 7,894) of the non-coding
exons. This fraction is not higher than for coding exons (1.7%, 16 of
938). Furthermore, only 7% (35 of 505) of the predicted exon-exon
junctions and 14% (46 of 336) of all exon clusters containRNAz
hits. This indicates that our predicted loci are mostly unstructured
or do not contain conserved secondary structures and consequently
cannot be detected by structure-based ncRNA finders.

Experimental validation of a predicted multi-exon transcript.
Clusters of predicted exons with highest cardinality are prime
candidates for novel genes. Our data contain two such top-scoring
clusters, each consisting of seven adjacent exons (Fig. 4A,B). The
first cluster is confirmed by ESTs and, according toBLASTX,
likely protein-coding. The second cluster has RNA-seq support for
only one exon-exon junction. Therefore, we designed primers to
positions in the human genome that allow to verify the remaining
predicted transcript. We used RT-PCR in a human prostate cancer
cell line and subsequent cDNA sequencing. This confirmed eight
of the nine predicted splice sites and three of five predicted
exons (Fig. 4C). Furthermore, our experiments revealed complex
alternative splicing at this locus with five different isoforms in
prostate cancer cells. These contain even additional novel exons,
neither detected by existing methods nor our current approach.

4 DISCUSSION
We present a computational procedure to identify novel spliced
transcripts in vertebrate genomes using conserved splice sites and
signatures of length-constrained exons. We deliberately neglect
features of protein-coding genes and outline a first conceptual
approach towards thede-novoprediction of long non-coding RNAs.

We have previously demonstrated the value of conserved introns
for the prediction of conserved, and hence likely functional,
ncRNAs in insect genomes (Hiller et al., 2009). In this work,
we now tackled the problem of applying this conceptual idea to
vertebrate genomes, whereab initio splice site and intron prediction
is challenging due to the drastically increased absolute length and
length variability of vertebrate introns. We developed a two step
procedure that first predicts novel splice sites, which are in a
second step combined to predicted exons. A key improvement is

a novel log-odds score for splice site substitutions that explicitly
takes the phylogenetic tree into account, avoiding biases of previous
approaches. We show that this tree-based method substantially
improves the power of splice site detection and outperforms two
other approaches. The general concept behind this tree-based
method can be applied to detect other biologically relevant signals
and motifs in multiple sequence alignments.

Our predicted exons and exon clusters mostly belong to non-
coding transcripts. These transcripts also rarely contain conserved
secondary structures. This means that current methods to find
coding genes or structured ncRNAs will miss most of our
predictions and that our approach complements existing methods.

High-throughput transcriptome sequencing has led to the
discovery of many unknown exons and transcripts. However, for
the following reasons we believe thatab initio computational
predictions of conserved transcripts complement experimental
approaches. First, tissue-specific transcripts can only be detected
when a large variety of conditions such as cell types, tissues,
time points is sampled. Second, detecting transcripts with low
expression levels requires sufficiently deep sequencing. These
limitations are particularly relevant for ncRNAs, which often
have low and highly specific expression patterns (Ravasi et al.,
2006; Mercer et al., 2008). Consistent with this and the fact
that our predictions are mostly non-coding, we observed that
more transcript data leads to the confirmation of more predictions
without any observable saturation. Furthermore, our predictions
confirmed by transcriptome sequencing data mostly have tissue-
specific expression patterns. While our predictions will inevitably
contain false positives, these observations suggest the existence of
further evolutionarily conserved, and hence likely functional, multi-
exon transcripts that still remain hidden in the human genome.
Future increases in transcriptome sequencing depth and breadth
will confirm additional predictions. Also, our exon and transcript
predictions can be included in ongoing large-scale RT-PCR based
efforts to further validate human gene predictions (Harrow et al.,
2006). Our approach complements other gene prediction approaches
and contributes to completing the catalog of human transcripts.

AVAILABILITY
Predicted human splice sites, exons, and gene structures together
with a Perl implementation of the tree-based log-odds scoring and
a supplemental PDF file containing additional figures and tables
are available at:http://www.bioinf.uni-leipzig.de/
publications/supplements/10-010.

The five experimentally confirmed partial transcript isoforms
have been deposited in GenBank under accession numbers
HM587422-HM587426.
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