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Abstract
The folding of biopolymers is crucially determined by the properties and the topology of the 
underlying energy landscape. A reduced representation of these energy landscapes is provided 
by barrier trees, which can be used to study the dynamical behavior of the folding. We pre-
sented a generic, problem-independent approach for the generation of barrier trees of discrete 
biopolymer models. In contrast to previous studies, the approach used does not rely on enu-
meration, which is limited to smaller molecules due to the amount of available memory. The 
algorithm has been applied to RNA and a lattice protein. The results show that the approach 
can be used to compute both all local minima and the exact barrier tree of an energy land-
scape. The presented method does not restrict the investigated conformation space to certain 
regions.

1. Introduction
The three-dimensional structure of RNA and proteins is vital for their biological function. An 
insight into the structure formation process can be gained by the study of the energy surface, 
on which the folding proceeds. These energy landscapes exhibit the same geometrical features 
as natural occurring landscapes, like mountains, valleys, plains, ridges and so on, but they are 
multidimensional. Typical characteristics of a landscape, like the number of local optima, the 
basin distribution as well as the transition states between the optima, can be conveniently vi-
sualized in the manner of a barrier tree. These barrier trees provide a reduced representation 
of energy landscapes, and they are a very useful description for the study of biopolymer fold-
ing pathways. They also give an appropriate impression of the overall topology of the energy 
landscape. Having the underlying energy landscape of a biopolymer at hand, the folding dy-
namics of the molecule can be investigated, and properties of the folding landscape like kinet-
ic traps can be unveiled. See Figure 1 for a schematic energy landscape representation and the 
associated barrier tree.

Figure 1 Schematic representation of an energy landscape and its associated barrier tree. The local minima are 
marked with numbers, and their connecting saddle points are marked with lowercase letters. The global minim-
um of the energy landscape is marked with an asterisk (taken from ref. [12]).

A stochastic  algorithm to simulate  the folding kinetics of RNA sequences into secondary 
structures was presented by Flamm et al.  [3]. The stochastic simulation considers all legal 
RNA structures, which makes it very time-consuming and computationally intensive. The bar-



rier tree of an energy landscape can be computed by exhaustive enumeration of all conforma-
tions as implemented in the program barriers [3]. Since the search space grows exponen-
tially with the length of the molecule even in simplified models [6,9], its use is limited to 
landscapes of modest size. Different kinetics for the study of RNA folding based on barrier 
trees have been presented in [11]. A generic algorithm to generate and explore the lower part 
of energy landscapes was presented by Wolfinger et al. [12]. The approach was applied to lat-
tice protein energy landscapes. However, the method is limited by the available memory and 
enumerates only structures below a given energy threshold. The resulting barrier trees repre-
sent just a partial landscape.
In this work, we present a method to approximate the barrier tree of an energy landscape. The 
used sampling approach does not restrict the search space, enables arbitrary approximation 
accuracy and can be implemented memory efficient.

2. Methods
Energy Landscapes
A biopolymer energy landscape can be described formally by the following three parts (cf. [8] 
for a more general definition):

• a set X  of conformations,
• an operator )(: XXN Ρ→ , which defines the neighborhood of a conformation x  in 

X  and assigns to each conformation a set of accessible neighbors )(xN , and
• an energy function ℜ→XE : .

The conformation space is formed by the conformation set X  in combination with the neigh-
borhood  operator  N .  An  energy  function  E  is  called  non-degenerate,  if 

yxyExE =↔= )()( .  A conformation  x̂  in  X  is called  local  minimum,  if  for all  y  in 
)()ˆ(:)ˆ( yExExN ≤ .  A conformation  x̂  in  X  is called a  global minimum,  if  for all  y  in 

)()ˆ(: yExEX ≤ . A list of conformations yxxx k == ,,1   with ix  in X  for all ki ≤≤1  and 

ix  in )( 1+ixN  for all ki <≤1  is a walk between the conformations x  and y . The term ran-
dom walk denotes an arbitrary, randomly chosen walk between two conformations. A walk is 
called an adaptive walk, if only neighbors with a lower energy are accepted. It is called a gra-
dient walk, if in each step the neighbor with the minimal energy has to be chosen. The saddle 
height ]ˆ,ˆ[ yxE  between two local minima x̂  and ŷ  is the minimum height that makes them 
accessible  from each other,  that  is  ( )[ ]{ }yxwwssEyxE ˆ  toˆ from walk :||maxmin]ˆ,ˆ[ ∈= .  A 
point s in X that satisfies this condition is called a saddle point. In non-degenerate landscapes, 
each saddle point is unique. The barrier of a local minimum is the height of the lowest saddle 
point that has to be overcome in order to reach a more favorable local minimum.
The local minima and the saddle points connecting the metastable states can be represented in 
a unique hierarchical structure called the barrier tree of the energy landscape. An example of 
a barrier tree with a schematic representation of the underlying energy landscape is given in 
Figure 1. In this example, the local minima marked with the numbers 2 and 3 are accessible to 
each other by the saddle point c . The saddle height ]3,2[E  corresponds to )(cE . The energy 
barrier of the minimum 3 is )3()( EcE − .

RNA Secondary Structures
Coarse-grained discrete structure models reduce the level of detail to allow computational 
studies. An RNA secondary structure S is a list of Watson-Crick (A-U, G-C) or non-standard 
(G-U) base pairs ),( ji  with the conditions that (1) each base i  can pair with at most one other 



base j , and that (2) there are no two pairs ),( ji  and ),( lk  with ljki <<<  [10]. A structure 
satisfying the second condition is called non-crossing and does not contain pseudo-knots. An 
RNA secondary structure can be visualized as a planar secondary structure graph or as a 
string in the bracket notation with two matching parentheses symbolizing a matching base 
pair and dots representing unpaired bases.
The abstract parts of energy landscapes are defined as follows for RNA: the conformation 
set X of a given RNA sequence s is the set of all secondary structures S, or conformations, that 
are compatible with s. The neighborhood of a conformation S in X is defined by single moves. 
A single move assigns a structure Sx in X a neighbor Sy in X by removal or insertion of a single 
base pair ),( ji  in compliance with the restriction that no pseudo-knots are allowed. The ener-
gy function is defined according to the nearest neighbor energy model, where the energy of an 
RNA structure is assumed to be equal to the summed up energy contributions of all secondary 
structural elements the structure can be decomposed into. Zuker and Stiegler formulated a dy-
namic programming algorithm for the calculation of minimum free energy structures using 
this energy model [14]. An algorithm that generates all suboptimal conformations below a 
certain energy threshold was presented by Wuchty et al. [13].

Lattice Proteins
A simple and well-known coarse-grained protein model is the  HP-Model  proposed by Lau 
and Dill [5]. It reduces the 20-letter alphabet of the amino acids to a two-letter alphabet, con-
sisting of H, which represents hydrophobic amino acids, and P, which represents polar or hy-
drophilic amino acids. Since it is commonly believed that the hydrophobic force is dominant 
in protein folding, the energy function only favors contacts between H-monomers. Only the 
backbone structure of the protein is modeled, that is one position for each amino acid. These 
positions are restricted to discrete positions on a geometrical structure that is known as lattice.
The conformation set consists of all self-avoiding walk structures that have the length of a 
given sequence s. The organization of the conformation space is described by pivot moves, 
which are rotations or reflections of the conformation behind a certain monomer. The energy 
function is given by the sum of the pair wise contact potentials of the structure. Optimal struc-
tures of simplified proteins on different lattices can be predicted using an approach based on 
constraint programming [2]. A structure is optimal, if there are as many contacts between H-
monomers as possible. For the purpose of protein structure prediction, maximally compact 
hydrophobic cores are enumerated first. Subsequently, one tries to place the protein sequence 
on a compact core.

Sampling of the Energy Landscape
In this study, the barrier tree of an energy landscape was constructed without exhaustive enu-
meration of all possible biopolymer structures. Instead, it was approximated by a sampling 
over the conformation space of the biopolymer.
The following sampling strategy was used:

• Choose a minimum x out of all local minima that are already known.
• Perform a random walk of given length that starts from x and terminates in conforma-

tion xn. Save the highest energy value Emax during the random walk.
• Perform an adaptive walk starting from xn. The walk terminates in a local minimum y.
• If the minimum y is not yet known, add y to the barrier tree and add the mutual acces-

sibility energy Emax between x and y. If the minimum y is already known, and if Emax is 
lower than the current mutual accessibility energy Ecurr between the minima x and y in 
the barrier tree, replace Ecurr by Emax.

• Iterate from step 1 while the termination condition is not fulfilled.



Figure 2 illustrates the whole sampling approach.

Figure 2 Sampling of the energy landscape. a) A given barrier tree with two local minima 1 and 2, connected by 
the saddle point a. b) Choose minimum 2 randomly as random walk start conformation. The subsequent adaptive 
walk starts from the end conformation of the random walk and terminates in the local minimum 3. E(b) is the 
highest energy value during the random walk. Since minimum 3 is not yet known, add it to the barrier tree and 
connect it to minimum 2 by the saddle point b with the height E(b). c) Another sampled walk between minima 2 
and 3 results in the saddle point c connecting 2 and 3. Since E(c) < E(b), update the estimated saddle height E(b) 
between 2 and 3 to the correct saddle height E(c). d) The resulting barrier tree of the energy landscape.

The resulting barrier tree is an approximation for the exact barrier tree of energy landscape. 
The approximation quality depends on the sampling and is increased with the number of sam-
pling iterations. The whole sampling process can be controlled by the number of iterations, 
the length of the random walk, and the way of choosing the start conformation from the barri-
er tree for each iteration step. To favor low-energy conformations, the frequency of choosing 
an optimum as start conformation was proportional to the Boltzmann weight of the optimum. 
The sampling also requires a good set of start conformations. Optimal and near-optimal struc-
tures of the given RNA sequence were predicted by the approach of Wuchty et al. For pro-
teins, constraint-based protein structure prediction was used.
The abstract barrier tree data structure utilized by the sampling algorithm has to meet the de-
mand that the information gained by the sampling is stored memory efficient. Furthermore, 
the data structure should support several basic operations like, for instance, insertion of a new 
local minimum and update of an estimated saddle height with moderate time complexity. A 
binary tree meets these demands. When using a binary tree, the current barrier tree is always 
available for visual inspection and can be used to guide the sampling.

3. Results
Implementation of Energy Landscape Models
The presented sampling approach is generic; this means that it is not dependent on the under-
lying energy landscape model. Thus, a framework for the study of arbitrary landscapes is 
needed. The landscape models have to define at least a set of conformations and a neighbor-
hood of the conformations in order to form the conformation space and an energy function 
over the conformations. The Energy Landscape Library (ELL) developed by our group meets 
these basic requirements [7].  The ELL currently implements energy landscape models for 
RNA secondary structures and for structures of simple lattice proteins. Due to the fact that the 



ELL is highly modular, all available landscape models can be extended in a simple way and 
new models can be implemented in a straightforward manner.

Experiments
An RNA example was used to assess if the sampling approach is capable of finding the exact 
barrier tree of the energy landscape. For RNA secondary structures, efficient algorithms exist 
to enumerate suboptimal structures. Thus, exact barrier trees for small molecules can be com-
puted [3]. This provides the possibility to verify the barrier trees obtained by the sampling ap-
proach. A lattice protein example demonstrates the capabilities of the presented approach. In 
contrast to RNA secondary structures, no efficient algorithm for the enumeration of subopti-
mal structures below a certain energy level exist for lattice proteins. Hence, no exact barrier 
trees were available for comparison with the sampled ones.
As a first example, an artificially designed RNA molecule of length 20 with the sequence 
CUGCGGCUUUGGCUCUAGCC denoted xbix [11] was chosen. The conformation space of this 
molecule  consists  of  3886 secondary  structures.  Figure  3 shows the  exact  barrier  tree  of 
xbix. The tree was computed from a list of all conformations generated by  RNAsubopt, 
which is part of the Vienna RNA Package [4]. The barrier tree has 34 local minima. The 
mfe structure ....((((........)))) has an energy of -4.3 kcal/mol and is represented 
by minimum 1. To assess our approach, a sampling of the energy landscape was performed, 
starting from the mfe conformation. The sampling was terminated as soon as the exact barrier 
tree has been found. On average over 10 runs, all 34 local minima were found after 1246 sam-
pling iterations. The exact barrier tree was found after 25960 iterations on average.

Figure 3 Barrier tree of the artificially designed RNA sequence xbix and the eight lowest local minima of the 
energy landscape.

The 27-mer HPNX sequence HHXHPHHHNPHHPHHHHNHPHNHHHNP in the three-dimension-
al cubic lattice was chosen as lattice protein example. The start conformations for the sam-
pling were provided by constraint-based protein structure prediction [2]. The starting set con-
sisted of the unique ground state with E = -80 and four suboptimal conformations on the first 
energy level with E = -79. The energy landscape sampling was stopped after 7 million itera-
tions. The barrier tree resulting from a sampling is given in Figure 4. The tree shows the 150 
lowest local minima. Altogether, 6444934 different local minima were found. Since symmet-
rical structures were not excluded, the tree shows 5 ground states due to rotations and reflec-



tions. These states have an energy of -80 and are labeled with 1 to 5 within the tree. Besides 
this, 20 suboptimal conformations with an energy of -79 were found. Previous studies of the 
landscape of this sequence gave a barrier tree with a single minimum with E = -80 and 4 mini-
ma with E = -79 [12]. The optimal and near-optimal conformations were connected via saddle 
heights in an energy range of -40 to -50. In the barrier tree found by the sampling approach, 
the optimal conformations are mutually accessible by energies between -30 to -40. This shows 
that the resulting barrier tree is just an approximation of the exact one.

Figure 4 Barrier tree of the HPNX-kind lattice protein after 7 million sampling iterations.

Discussion of Results
In the RNA example, the approach for the sampling of energy landscapes yielded the exact 
barrier tree. With our method, all local minima of the landscape were found after a small 
number of sampling steps. Consequently, the sampling approach can be used to determine the 
local minima of biopolymer folding landscapes, at least for short sequences. To compare the 
barrier tree resulting from the sampling with the exact barrier tree, the root mean square devi-
ation (RMSD) over their saddle heights was used. The RMSD soon reached the value zero, 
which means that the barrier tree obtained by the sampling agreed with the exact barrier tree. 
Accordingly, the sampling approach is capable of resulting in the correct barrier tree of an en-
ergy landscape. The runtime of the sampling implementation was a few seconds, which is by 
all means acceptable. 
Applied to lattice proteins, the sampling approach found significantly more local minima than 
the previous “flooding” approach, which is based on enumeration of low-energy conforma-
tions [12]. Symmetrical structures of optimal and suboptimal conformations were found, and 
thus a larger region of the energy landscape was covered. Beyond this, all local minima are 
connected. The “flooding” approach usually gives non-connected subtrees. Therefore, direct 
or minimal refolding paths between non-connected minima have to be sampled. An drawback 
of the presented sampling method is that the estimated saddle heights are just an upper bound 
of the exact saddle heights.
The barrier tree of the lattice protein showed that there are several optimal and suboptimal 
conformations with exactly the same energy. This high degree of degeneracy is a common 
feature of lattice protein energy landscapes. It can be seen as an artifact of the underlying 
model, which uses a limited alphabet size and fixed bond lengths and angles. At this point, it 
seems reasonable to ask whether it is correct to model proteins with reduced alphabets as two 



or four-letter alphabets. Several experimental studies have shown that functional and rapidly 
folding proteins do not necessarily require the full sequence complexity of naturally occurring 
proteins (see for example [1]). Since the approach presented here is generic and problem-in-
dependent, it can be readily applied to more realistic models with an alphabet that is larger 
than the four-letter HPNX alphabet or with more complex lattices like the face-centered cubic 
lattice (FCC). However, because the degrees of freedom increase in the FCC lattice, the size 
of the conformation space increases as well. Thus, more sampling iterations are required to 
obtain a good barrier tree approximation.

4. Conclusion
Barrier trees provide a coarse-grained representation of energy landscapes by organizing local 
minima and saddle heights in a hierarchical structure. They are a very useful tool for the study 
of biopolymer folding pathways. We developed a random sampling approach, which allows 
computing the exact or approximated barrier tree of the energy landscape. Using this method, 
the investigated conformation space of the landscape is not restricted to certain regions. Thus, 
in comparison to the current approaches for lattice proteins, more local minima were found, 
and the resulting barrier trees covered a larger region of the energy landscape. The sampling 
method has the advantage that, in contrast to methods based on enumeration, the number of 
sampled conformations for the barrier tree construction is not basically restricted by the avail-
able amount of memory. However, the estimated saddle heights within the resulting barrier 
trees are just an approximation of the saddle heights and can therefore be higher than within 
the exact barrier tree of the energy landscape. The sampling of direct paths between local 
minima of  the  barrier  tree  is  a  possible  way to  find better  approximations  of  the  saddle 
heights.  The comparison of different approaches for the exploration of energy landscapes, 
namely selective enumeration and sampling of conformations, indicates that a strategy which 
combines the two methods could achieve very promising results. The sampling approach is 
capable of finding a huge number of minima and could therefore be used to roughly character-
ize the energy landscape. Afterwards, the “flooding” approach could be used to calculate the 
exact barrier tree of certain landscape regions by selective enumeration starting from minima 
that were found by the sampling.
Altogether, the sampling approach appears to be a promising technique for the computation of 
barrier trees as reduced representation of discrete biopolymer model energy landscapes. The 
barrier trees can be used as basis for the estimation of basin sizes. Moreover, they are a good 
starting point for the calculation of folding kinetics.
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