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ABSTRACT

Motivation: The computational search for novel miRNA precursors
often involves some sort of structural analysis with the aim of
identifying which type of structures are prone to being recognised
and processed by the cellular miRNA-maturation machinery. A
natural way to tackle this problem is to perform clustering over the
candidate structures along with known miRNA precursor structures.
Mixed clusters allows then the identification of candidates that are
similar to known precursors. Given the large number of pre-miRNA
candidates that can be identified in single-genome approaches, even
after applying several filters for precursor robustness and stability, a
conventional structural clustering approach is unfeasible.

Results: We propose a method to represent candidate structures
in a feature space which summarises key sequence/structure
characteristics of each candidate. We demonstrate that proximity in
this feature space is related to sequence/structure similarity, and we
select candidates which have a high similarity to known precursors.
Additional filtering steps are then applied to further reduce the number
of candidates to those with greater transcriptional potential. Our
method is compared to another single-genome method (TripletSVM)
in two datasets, showing better performance in one and comparable
performance in the other, for larger training sets. Additionally, we
show that our approach allows for a better interpretation of the results.
Availability and Implementation: The MinDist method is implemented
using Perl scripts and is freely available at
http://www.cravela.org/?mindist=1

Contact: backofen@uni-freiburg.de

1 INTRODUCTION

MicroRNAs (miRNASs) constitute one of several classes of small
RNAs found in plant and animal branches of Eukaryota. Since th
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e

discovery of the first miRNAs irC. elegangLeeet al., 1993), an
abundant number of these regulatory RNAs (ranging from 18-25 nt
in length) have been discovered and their underlying mechanisms
investigated (for an overview see e.g. Bartel (2009)). MiRNAs
originate from the maturation of larger precursors-o70 nt called
pre-miRNAs.

An important feature of pre-miRNAs that elicits their recognition
by the miRNA-processing machinery is their secondary structure.
Pre-miRNAs typically exhibit a stem-loop structure with few
internal loops or asymmetric bulges but the variety of structures
that are efficiently recognised has escaped any strict characterisation
(Lindow and Gorodkin, 2007). Previously, we proposed a
combination of measures that distinguishes true pre-miRNAs from
the large number of stem-loops that can be found in metazoan
genomes (Mendest al., 2010). However, the number of precursor
candidates (in the order of a few hundred thousand) obtained
above the optimal cutoff of the score, which combines measures of
stability and robustness, is still impractically large to be subjected to
experimental confirmation (see the CRAVELA framework website
for further detailshttp:///www.cravela.org ). Despite the
fact that all these candidates consist of or contain stem-loops, the
details of their secondary structure have not been subjected to a
thorough analysis.

The most immediate approach to analysing the variety of pre-
miRNAs in our candidate set is to seek the identification of structural
families amongst the precursor candidates. Although miRNAs have
been grouped into families according to their sequence similarity in
the miRBase database (Griffiths-Joretsal., 2003), this approach
does not give enough insight as to the structural features that are
important for the recognition by the miRNA-processing machinery.
Hence, the grouping has to be performed according to seqaeice
structure. Various algorithmic approaches have been introduced to
determine structural similarities and to derive consensus structure
patterns for structural RNAs with low sequence identity (Siebert and
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Backofen, 2005; Bchsmanret al., 2003; Sankoff, 1985; Gorodkin

et al, 1997; Havgaarcet al, 2005; Mathews and Turner, 2002; QLeTTIGIGIGTGTGT
Bradley et al., 2008; Hofackert al., 2004; Will et al., 2007; @ @ R A S D
Heyneet al., 2009; Bompfunewereat al., 2008). A first approach 4

towards the clustering of miRNAs has been achieved in Kaczkowski O (0,0,...,0,2,0,...,0,1,0,...,0,2,0,...)
et al. (2009), where a sequence-structure alignment was used to 4

cluster 220 miRNAs into structural classes. However, all these © ©0,...,0,0.1,0,...,0,0.05,0,...,0,0.1,0,...)

approaches suffer from a high computational complexity, with a
time requirement typically betwee®(n*) and O(n°). It is thus

computationally unfeasible to cluster hundreds of thousands 0Ifig. 1. Example of a vectorial representatiqa) The characteristics of a
candidates using this approach single position are determined, which include the nucleotide and whether

Th . d of trvi | h did . the previous, current and following positions in the secondary structure are
us, Instead of trying to cluster the candidate set, we Summ‘m"sl?npaired (0), left/right paired (1/2), or located in the terminal loop (18).

the structural and sequence features of each candidate UsiNgpgtions of the final vector illustrating the counts. Each vector position refers
vectorial representation and attempt to identify the region ofig a particular nucleotide type and the neighbouring pairing status, from
the feature space most likely to contain hairpins recognised bya,o,0,0) to (G, 3,3,3). (c) Portions of the normalized vector obtained
the cellular miRNA-processing machinery. Furthermore, usingfrom (b), each position is divided by a constant such that the sum of all
samples of the candidate set, we show that the relative positiorgomponentsis 1.

of the representations of the candidates in the feature space are

reminiscent of the partitions derived from a conventional clusteringscanning the entire precursor, each position in the vector is normalised by
performed with the state-of-the-art sequence/structure alignmentividing its counts by the length of the sequence.

tool LocARNA (Will et al, 2007). And, most importantly, we A similar representation has already been used to represent feature vectors

observe that known precursors are represented in a limited portioff RNA stem-loops in the context of training a support-vector machine (Xue
of the feature space. et al., 2005) and was amongst the representations we have considered (see

We use this approach to analyse a set of robust and stable hairpil%lpplementaw materials). The representation we use here is richer than the
extracted from a genome-wide scan (Mendssal., 2010) of one proposed by these authors in the sense that it distinguishes the situation

hel biaand hil | | duci where a given position is the left or right-hand side of a base-pair instead
Anopheles gambiagndDrosophila melanogastegreatly reducing of simply being a paired position and it also represents unpaired nucleotides

the number of candidates. A further reduction is achieved by, the stem region or the terminal loop differently. In this way, information
assessing the transcriptional potential of each remaining candidat@out asymmetrical loops and bulges in the stem is captured by the vector
and, by additionally restricting our analysis to candidates with thecounts.

potential of being part of miRNA genomic clusters, we obtain

a dataset which is small enough to be subjected to experimenta) 5 ~onventional structural clustering

verification. o ] L
In order to identify clusters of high sequence-structure similarity, we apply

a clustering procedure based on RNA sequence-structure alignment. For this
2 METHODS purpose we usetlocARNA which is one of the fastest and most accurate
) ) tools for multiple RNA sequence alignment (Wt al, 2007). LocARNA
In this work, we present an approach to evaluating the sequence and struct%grforms Sankoff-style simultaneous alignment and folding (Sankoff,

similarity of a very large number of hairpins with an application to the 1ggs) This approach generates high-quality alignments that take structural
identification of pre-miRNA candidates. In a first step, we demonstrate tha&imilarity into account. Notably, the structural information is not requaed

our vectorial representation of RNA structures and the Euclidian diStanc%riori but can be inferred, in parallel to the alignment process, based on an
in the multidimensional space consequently defined is comparable to thgna free energy modeLocARNAachieves its short run-times for pairwise
sequence/structure similarities identified hgcARNA — a conventional alignment because it needs to consider only significant base pairs. The
structural clustering method. In a second step, we observe that known pregsqqiated cluster pipeline generates a hierarchical cluster tree by applying
miRNAs tend to populate a specific region of the multidimensional SPac&y average-linkage clustering (UPGMA) to the matrix of pairiiseARNA

defined by the principal components of a vectorial representation of allyistances. This pipeline was validated by a re-clustering of Rfam and could
candidate structures. We therefore use the position of known precursors Véproduce Rfam families with good precision at high average recall.

this multidimensional space to identify the region of interest and select the |, ihe case of clustering microRNA candidates, we do not have any prior

candidates populating it. knowledge of clusters. Therefore, we need to define a reasonable partitioning
21 Wi ial . f d of the cluster tree into an optimal number of clusters. For this purpose, we
) ectorial representation of sequence and structure apply a variant of the Duda rule (Du@#al., 2001) implemented in the tool
We use a vectorial representation for candidate precursors which summarisBNAsoup (http://www.bioinf.uni-leipzig.de/\"kristin/
key features of the primary/secondary structure of a given stem-loop. Th&oftware/RNAsoup/ ). To this purpose, a subtree is reported as
representation we chose, after considering several options and selectimyn optimal cluster if the sum-of-squared errors for two clusters is not
the one that best matched the results of conventional clustering (sesignificantly smaller than what is expected by chance (Kaczkoeski,
Supplementary materials), consists of a vector of normalised counts. T&009). The significance level can be controlledkbyrhe larger is the value
build this vector, we use a sliding window of lengif(a triplet) that scans  of k, the larger the difference of squared error allowed before a subtree is
the precursor candidate (see Fig. 1). At each step, a position in the vector gplit into two clusters. In our case, the error of a cluster is determined via
incremented. The appropriate vector position is mapped considering whethéne free energy of its consensus structure and the minimum free energies
each nucleotide within the window and with respect to the MFE structure isof its individual sequences. The minimum free energy of single sequences
the left/right-hand side of a base-pair, an unpaired nucleotide on the stenis calculated by RNAfold (Hofackeet al., 1994). The consensus structure
or part of the terminal loop, and, additionally, which base is present at theand energy are calculated by RNAalifold (Hofackeial., 2002) based on a
midpoint of the window. We have, thus, a vector with 256 positions. After multiple LocARNAalignment of the subtree.
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2.3 PCA of vectorial representations k-level A. gambiae D. melanogaster

Corr. assign. p-value  Avg.cl. size  Corr. assign. p-value Avg. cl. size

The vectc_mal repr_esentatlon of the stem-loop structures usec_i in this work—g g9 83.60%  8.580.87 305  8210% 3450125 3.29
captures information about sequence/structure features but, in general, the o.10 82.50%  1.69e-87 333  81.24%  1.92e-120 3.54
dimensions of these feature vectors are not independent. Furthermore, 020 81.21%  8.68e-84 3.70 ~ 80.01%  4.31e-113 3.89
f : ; : 0.30 79.30%  2.37e-76 427  78.24%  3.31e-108 4.44
all vectors will alway_s have zero values in some dlmen5|9n as SOME. ("o 22 oot g 976.65 e e ]
combinations of left/right-hand paired and unpaired nucleotides are not zq 74.12%  2.24e-55 761 72.80%  1.43e-84 754
possible in actual RNA structures. In order to reduce the number of o0.60 71.23%  2.76e-42 12.09  69.45%  1.0le-61 11.44
dimensions and to ensure we represent our structures in a space with 0.70 68.70%  1.05e-31 17.24  67.41%  1.74e-54 15.32
. . . . . . . . . V) - -
independent dimensions, we readily eliminate dimensions with zero CO.TI06 01;26 19:52] 66 07 RS 676 A v
0.90 67.37%  2.57e-22 2108  65.72%  4.01e-37 20.09

variance. In practice, for a sufficiently large dataset, this will onl - . -
P y arg yTable 1. Evaluation of vectorial representations. For edelevel, the

eliminate dimensions for which all vectors have a value of zero. Over th . .
remaining dimensions, we perform a principal component analysis (PCA ble shows the percentage of correct assignments in the datasats of
' ambiaeand D. melanogaster, the-value of Welch's two-sample t-test

thus obtaining a space of linearly independent coordinates. Additionall . . ; B .
. h . S . .~ Comparing the observed correct assignments with a randomised version
each dimension of the vectorial representation is scaled to unit variancg ) ; )
; of each dataset shuffling the correspondence between candidates and their
before performing the PCA. . .
vectorial representation, and the average number of cluster members.

2.4 Evaluation

2.4.1 Randomisation procedure\ randomisation procedure is used getails of this procedure are described in the Methods section). For
to compare our approach to the results obtained for samples of the datas values ofk, the procedure produces clusters with highly similar

using conventional structural clustering in terms of the proportion o . . - L
) 4 imafuctures. An increasing value &f allows for more dissimilar
correctly assigned cluster members. This procedure allows us to estima

the likelihood that our values were obtained by chance or as a result g,tructures to be included in _the Same Clu_Ster' therefore producing
the way our candidates are spatially distributed in the principal componenglower number of clusters with an increasing number of structures.
space. To obtain the proportion of correctly assigned cluster members in We then represent each structure from the samples using a
the randomised version of the samples, we keep each candidate in the sav@gtorial representation summarising sequence/structural features,
position of the principal components space but we shuffle theiridentiges, in an effort to capture the key elements distinguishing the
we randomly select two candidates and we swap their coordinates, repeatirgrious hairpins. These feature vectors contain, however, both
the process until all candidates have had their coordinates swapped. Afigiterdependent dimensions and dimensions with different variance.
having performed the random swapping of candidates, we calculate thg, gptain a linearly independent set of dimensions, we perform
centroids of each cluster in the shuffled space and the resulting proporti%p principal components analysis (PCA) over the vectorial
of correctly assigned cluster membelA similar procedur is usec to representations mapping them to their principal components
obtair Tandon sample of the mediar distanct of knowr precursor to their representation (feature space).

centroid. To determine whether our representation of the candidates in the
2.4.2 Sampling the datasets for performance evaluatitmassess principal components space reflects the structural clusters found by
the performance of both our method and TripletSVM, four groups of samplesocARNA for the differentk-levels, we calculate the proportion of

of different sizes were prepared for each dataset. Each sample group Wggrrect assignments, which measures the ratio of cluster members
divided in training sets and testing sets, both with the same number @5t are closer to their assigned cluster centroid as opposed to
positive and negative examples. Each sample group is made of 1000 samplgscanirgid of another cluster. The cluster centroid is calculated
The positive examples in the training set of each sample are a random subﬁ§} determining the average position of the cluster members each
of apool of knowr miRNAs, with a single representatiy per miRNA family dimension at a time. The distribution of this measure in our 100

(either 5%, 10%, 20% or 50% the pool) and the remaining pre-miRN/in; les is th d to its distribution i domised .
the pool make up the positive examples of the corresponding testing set. TIRAMples Is then compared to Its distribution in a randomised version

negative examples in both the training and testing sets of each sample & OUr spatial representation of the candidates, where candidate
random subsets of the candidates having the same size of the correspondifitions are kept but candidate identities are shuffled.

positive examples. Our method uses only the positive examples in the The comparison with the randomised version of the spatial
training set as a reference from which to compute the distance to the elemertistribution of candidates allows us to address the fact that the
in the testing set, whereas TripletSVM, for each sample, is trained using botsignificance of the absolute distances of each candidate to its cluster
the positive and negative examples of the training set and is evaluated agaiggintroid in the feature space can only be determined comparatively.

the testing set. For instance, some clusters may have only one member, in which
case it will always coincide with its cluster centroid and, more
3 DISCUSSION generally, it may happen that variations in distance of a candidate to

. . its assigned cluster centroid for differddevels, or even different

3.1 Vector representation reflects structural clustering vectorial representations, may partially reflect the overall density of
To assess the adequacy of our approach with respect to its abilitie candidates rather than a better evaluation of structural similarity.
to identify regions of structural similarity in a way that resembles Table 1 shows that, for both datasets, a large proportion of
conventional sequence/structure clustering, we adopt the followinguster members are found closer to their cluster centroid than to the
procedure. We us&ocARNA to perform hierarchical structural centroid of any other cluster. For the most heterogeneous clusters
clustering over 100 samples of 1000 randomly chosen stem-loopghich are obtained ak-level 0.90 the proportion of correctly
drawn from theD. melanogasteand A. gambiaedatasets, always assigned cluster members is about two-thirds, and it rises above 80%
including the entire set of known miRNAs for each organism, andor the structurally more homogeneous clusters obtainddletel

we determine the optimal partition into clusters applying a tree node.00. The comparison with the randomised datasets shows that the
evaluation rule for various significance levels calledevels (the results are statistically significant, i.e., these results are well above
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what one would hope to obtain by chance or simply due to the way 5o 10%
candidates are spatially distributed.

3.2 Known precursors are clustered together

Using the same samples from the datasets presented in the previous
section, we can observe that despite the fact that not all known
precursors are grouped together in the same clustébpRNA

at anyk-level (data not shown), they are however significantly close False posive rate False positve rate
and restricted to a limited portion of the features space. In fact, if we
take the centroid of the known precursors and calculate the median
distance of each known precursor to the centroid, we obtain a value
which is much smaller than what would be expected by chance
(p-value =8.00 x 1075 for A. gambiae p-value=8.94 x 10~""

for D. melanogasterestimate using the randomisatio procedure
describe in section 2.4.1).

True positive rate
True positive rate

00 02 04 06 08 10

T T T T
00 02 04 06 08 10 00 02 04 06 08 1.0

True positive rate
True positive rate

00 02 04 06 08 1.0

00 02 04 06 08 1.0 00 02 04 06 08 10

False positive rate False positive rate

3.3 Distance to known precursors is good predictor

The results shown in the previous section suggest that known
precursors tend to concentrate in a particular region of the feature
space. This region, however, is also densely populated by other
precursor candidates. Sinthe regior where knowr precursors

are found is inserted in an area of great density, it cannot be
identified by a purely unsupervised approach. Therefore we take
the coordinates of all known precursors and use them to identify the
closest candidates. This method has the advantage of allowing for

(a) A. gambiae

5% 10 %

True positive rate
True positive rate

00 02 04 06 08 1.0

00 02 04 06 08 10

i
different pre-miRNA structural clusters to emerge around subsets of 00 02 04 06 08 10 00 02 04 06 08 10

. . . False positive rate False positive rate
known precursors. The number of candidates that are included in the posteres potterat
acceptance region is controlled by the maximum distance allowed to 20%

the closest pre-miRNA.

The larger the permitted distance, the greater the chance of
selecting a region that includes all interesting candidates, but at the
expense of enlarging the number of false positives. The Youden
index (Youden, 1950).J, defined asmax. {TPR(c)— FPR(c)}

i.e., the maximum difference between the true positive rate (TPR)
and the false positive rate (FPR) over all cutoff values,is a
standard method to select the best compromise in such a trade-
off. The optimal cutoff valuec*, is the cutoff for whichJ = (b) D. melanogaster

TPR(c") __ FPR(c"). . . Fig. 2. ROC curve: for the minimunr distanc: (MinDist) to pre-miRNAs

To estimate the optimal cutoff, we consider subset‘.%.of knowhmethot anc the performanc of TripletSVM ovel 400C sample equally
precursors as reference and calculate the true/false positive rate Wiidec into 4 groups. Each group uses 5%, 10%, 20% or 50% of the known
respect to the remaining known precursors and other candidates (sg@cursors ofa) A. gambiaeand(b) D. melanogasteto set up the positive
detailed description in the Methods section). Fig. 2 shows the ROG@xamples of the training set. The positive examples of the testing set are
curves forA. gambiaeand D. melanogastemwhen using samples made up by the remaining precursors. In both sets, the negative examples are
of 5%, 10%, 20%, and 50% of known precursors as reference angamples of the set of candidates. ROC curves for each individual sample are
computing the trade-off between the true/false positive rates witighown in dashed lines and the average curve across the range of cutoff values
respect to the remaining precursors and an equal number of Samp“%sho_wn‘in a solid line. The red dot repre‘sen_ts the average performance of
candidates. Each figure shows the ROC curves of 1000 such sampltgg MinDist method over all samples considering the optlm_al cutoff for each

sample. The green dots represent the performance of TripletSVM on each
as well as the average curve, computed as the average pe.r.forma ?nple, whereas the green diamond refers to its average performance
over all samples across the full range of cutoff values. Additionally,
the figures also show the average performance of our method,
computed as the average TPR and FPR across all samples for theation between the value of the average optimal cutoff and the
optimal cutoff on each sample (note that this may be significantlypercentage of known precursors that is used as refergite=(
different from the optimal cutoff calculated on the average ROC0.998, for A. gambiae, andR? = 0.989, for D. melanogaster).
curve). Since the best choice of cutoff cannot be directly determined for the

The optimal cutoff in each of these ROC curves can be interpretedntire set of known precursors, we estimate it by extrapolating the
as the best choice of maximum distance allowed between a structukeg-linear model. The estimated optimal cutoff can be interpreted
and the closest precursor so that the former may be included ias the best choice of maximum distance to include additional (yet
the acceptance region. We have observed that there is a log-lineanknown) precursors with the least number of false positives.

¥ AUC=075

True positive rate
True positive rate

00 02 04 06 08 1.0

00 02 04 06 08 1.0

T T T T
00 02 04 06 08 10 00 02 04 06 08 10

False positive rate False positive rate
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% known A. gambiae D. melanogaster

MinDist TripletSVM MinDist TripletSVM which to seed the search for new pre-miRNAs are generally
Sens. Spec. F; Sens. Spec. F; Sens. Spec. F; Sens. Spec. Fi available.
5% 0.72 0.68 0.71 0.63 057 061 0.70 0.71 0.70 0.69 074 071 . . . .. .
10% 072 068 071 064 073 067 070 072 071 070 080 074 TripletSVM also bears the inconvenience of requiring negative

20 % 071 071 071 067 069 068 070 073 071 071 083 0.76 examples Wthh are inevitably Chosen Under the assumption _

50 % 071 074 072 066 076 0.69 072 075 073 0.70 0.86 0.76 . . .
80% 070 080 074 064 078 069 075 075 075 069 086 o075 however plausible and defensible — that miRNA precursors are

90 % 074 082 077 063 078 068 077 0.78 077 0.68 0.87 0.75 H H
5% Gbs 000 081 oea ous e e e e s oar s rare with respect to the overall number of candidates, but one

Table 2. Sensitivity (TPR) Specificiy (1 - FPR anc the F, measure cannot generally guarantee that hairpins which would normally
(2 TP/(TP+FP)«TPR | be processed by the miRNA-maturation pathway are not being

TP/(TP+FP)+TPR) of TripletSVM and M'nl_j'_St computed as the__included in the negative training seiOur approacl despite
average performance across all samples for training sets whose pos't"gssumin all candidate to be false itives for th f
examples consist of a fraction of known pre-miRNAs in positive: Tor the purpose o

performanc evaluatior doe: not use this informatior to shape

A. gambiaeandD. melanogaster the acceptanc regior and since it doe: not try to identify the

_ _ _ ) ) optima margir betweel positive anc negativi examples it is also
Using the estimated optimal cutoffs, the selected regions inclucjg

- est likely to suffel from overtraining. Additionally,by reflecting
23'5% (77 366) and 23.5% (67 619) of all ce}ndldates froméhe sequence/structure similarity in a way comparable to conventional
gambiaeandD. melanogastedatasets, respectively.

structural clustering, our method offers a better interpretation of the
decision rule that is made when selecting candidates.

3.4 Comparison to other methods

TripletSVM (Xue et al, 2005) is a classifier based on a suppor3,5 Transcriptional potential assessment further
vector machine (SVM) that purports to determine whether a given  rastricts the number of candidates

stem-loop is a pre-miRNA. The features considered by this SV

. .'\4'hnmrfni in r our structural analysi
are quite similar to those of theRTPLETS vectorial representation e number of candidates obtained after our structural analysis

L§r77 366 forA. gambiae, and 67 619 f@. melanogaster), albeit
considerably lower than the original candidate set (328 82%for

knowledge, the only single-genome method whose source code Ieslmbiae and 287 469 fob. melanogastey is still quite numerous.

made available and which includes the necessary routines to r%_plausible interpretation of these results is that, despite their

train the model with new data. Many other single-genome meth(.)%%ructural similarity to known precursors, the majority of these

exist (Mendest al., 2009), but their time complexity makes thelrcandidates are not pre-miRNAs due to other factors. Chiefly among

us? n .gl]e (_:I_Igslsﬁtl;?/t,l/cl)n of ?undrgds .Of thouiands of C?nd:cdatﬁ?ese is the fact that most remaining candidates are probably not
unteasible. Iriple was frained using positive examples 1ro fficiently transcribed or are playing different biological roles. This

samples of knqwn precursors anq negative gxgmp!es f.rom SaMmb|fdstrates the often ignored distinction between having an adequate
from the candidate set (a detailed description is given in thg

. . ) ?condary structure and actually being transcribed and processed.
Methods section). A graphical representation of the performance o

ol ) hof th | v distributed b A straightforward way to address the need to assess the
Trlp ?tSVM In e"?‘c of the 4000 samples (evenly distribute etweefpanscriptional potential of the candidates is the observation that
training sets using 5%, 10%, 20%, and 5

0% of the annotated prﬁiany fall within regions that have been annotated. Genomic

miRNAs), as well as the average performance in each group @ aiions with no annotation or which have been annotated as
samples, is shown in Fig. 2. Table 2 shows the sensitivity, specificity.ons may contain miRNA precursors, but candidates which

and theF, measure for TripletSVM as well as our method acrosg,er|ap regions annotated as exons, transposons or other non-coding
training sets including varying proportions (from 5 to 95%) ofgNAs are less likely to contain pre-miRNAs. If we filter out non-

known precursors. _ . _ viable candidates by this criterion, our candidate set is reduced to
The average performance of our methodirgambiagds superior 44 219 forA. gambiaeand 40 582 foD. melanogaster
to that of TripletSVM, and slightly worse i>. melanogaster |t we additionally restrict our search to putative miRNA cluster
except for sample groups containing a greater number of knOwflempers, which are very common genomic organisations of
precursors. The slightly better performance of TripletSVM in thenirNA precursors in metazoans, we can lower the number of
D. melanogasterdataset is the result of a tendency for havingcandidates by considering only those which are found in the vicinity
comparatively higher specificity but similar sensitivity. This isof known pre-miRNAs. The price to pay for this reduction is that
probably due to the fact that MinDist is sensitive to the inclusioRye risk missing yet unidentified miRNAs which happen to occur
of heterochromatic sequences in this dataset, which introducgsgenomic locations far from previously identified precursors, or
greater variability in terms of sequence/structure features. As\@hich are not part of a miRNA cluster. By selecting candidates
consequence, the variation between the features of pre-miRNA\gth viable annotation and at a genomic distance not greater than
and those of other stem-loops with more regular features becomss kp (as suggested in Baskerville and Bartel (2005)) from pre-
less apparent. It is worth noting, however, that despite achievingrgiRNAs, we reduce our candidate set to 439 forgambiaeand
slightly better average performancen melanogastefor sample 1 604 forD. melanogaster
groups containing a lower number of known precursors, the actual After having determined, for each dataset, the reduced list of
performance of TripletSVM in these samples varies greatly frorgandidates, a more detailed analysis was performed for two different
one sample to the other, alternating between very good and vegpproaches, both usitgcARNAas a method to perform structural
poor performances, particularly for the 5% sample group, as isierarchical clustering of our candidates along with the annotated
shown in Fig. Zb), which is a major disadvantage when exploringprecursors. Unlike before, we do not use a parameterised partition
recently sequenced genomes, for which few clear homologs witfle to enumerate our clusters at differénievels. Instead, we use
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Cluster (2 structures)

criteria aimed at identifying miRNA genomic clusters. The first e e e
approach consists in identifying, starting from the leaves of the :
similarity tree, the smallest structural clusters that include at least ]
one known precursor, and within these clusters we enumerate all
subsets of stem-loops that are located in close genomic proximity

]\i?"; éulgu

to each of the precursors in the structural cluster. This way we
can identify the candidates which are both structurally similar
and occurring close to each given precursor in the genome. The
second approach drops the requirement that a known precursor be

present and simply identifies leaves in thkeeARNAsimilarity tree, uee P R S
extracting the top-scoring clusters in terms of SCI (Wasleedl., '
2005) (Structure Conservation Index). Additionally, we enumerate """ m—

1041bp

all subsets of stem-loops that are in close genomic proximity to
each other, regardless of whether a known pre-miRNA is present.
This way we try to identify candidates which are both similar and in
the vicinity of one another. Subsets of stem-loops identified in the Cluster (2 structures) I
second approach which happen to be included in the output of the Rt RS stetne
first approach are discarded. }}‘ {
The first approach identifies 108 and 422 candidates in ; i
the extracted clusters fromh. gambiaeand D. melanogaster ! f
respectively, of which 5 and 11 were in the genomic vicinity of the ) 4 4
precursors included in their respective clusters. A total of 9 and 23 S i s MIPL 252
potential genomic clusters of pre-miRNAs (not to be confused with | et
structural clusters) corresponding to the relevant subsets of stem- Byt et T RN S e
loops of each structural cluster were identified using this approach
for A. gambiaeandD. melanogasterRespectively, 4 and 13 were
composed entirely of known pre-miRNAs at a median distance of
3327 and 237.5 bp while 5 and 10 contained precursor candidates
at a median distance of 12 424 and 22 820 bp (see Supplementary (b) Putative genomic cluster . melanogaster

materials for the list of most promising cluster candidates). TheFig.3. Genomic clusters of pre-miRNAs. Shown are the secondary structure

genomlg clgsters exclusively ma_dg up of precursors, a_s thg ON& both stem-loops, the consensus structure along with the SCI (structure
shown in Fig. ga), attest the ability of our method to identify conservation index) and the MPI (mean pairwise identity), .theARNA
structurally homogenous pre-miRNA genomic clusters while thEalignment and a representation of their genomic loci.
clusters which include new candidates, as seen in H, 3nay
indicate new instances of this type of genomic organisation anés a dormant repository of stem-loops which could be co-opted as
plausible miRNA precursors. pre-miRNAs (Smalheiser and Torvik, 2005).

The second approach, which purports to identify potential
genomic clusters where all members are non-annotated is, naturally,
limited to those candidates which happen to be included in thé CONCLUSION
initial set and are therefore close to known precursors in théNe have presented a method to assess the sequence/structures
genome, but which are structurally more similar to each othersimilarity of a large dataset of hairpins in search for novel pre-
than to any pre-miRNA. This approach identified 481 and 1618miRNAs and we have placed these candidates in a multidimensional
candidates in the extracted structural clusters Aorgambiae space in a way that reflects their structural characteristics. The
and D. melanogaster respectively, of which 81 and 147 were portion of the multidimensional space selected around the known
not more than 50 kb away from another stem-loop in the samere-miRNAs purports to include most structures which have the
structural cluster. The potential genomic clusters identified forpotential of being efficiently recognised by the cellular miRNA-
this approach total 7 and 65 at a median distance of 17 880 angrocessing machinery.
12 797 bp, respectively foA. gambiaeand D. melanogaster The fact that this region is very dense in terms of the number
Interestingly, there are several instances of identical or highlyof precursor candidates it contains tells us that a large number of
similar candidates in both datasets that make up genomic clustergenome locations have the potential to generate stable and robust
Some of these clusters (see Supplementary materials) have up $tructures which present sequence/structure similarities to known
three identical candidate members and are evenly spaced across thre-miRNAS. The use of annotation information helps reducing the
genome. They are either the result of a duplication event (mor@umber of selected candidates but after this filtering step, which is
specifically, triplication) or they correspond to instances of longnevertheless dependent on the quality and breadth of the available
repeats, transposons or other repeat sequences. In any case, the &utotation data, they remain in the tens of thousands. Therefore,
that they were selected based on their structural similarity to knowrhere is either an exceedingly large number of pre-miRNAs in
pre-miRNAs hints at the closeness of these structures and suppottsese datasets or, more plausibly, most of these candidates are not
the much discussed possibility that repetitive sequences may senedficiently transcribed but could otherwise be recognised as miRNA

precursors.

(a) Genomic cluster of known pre-miRNAs .
gambiae
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