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ABSTRACT
Motivation: The computational search for novel miRNA precursors
often involves some sort of structural analysis with the aim of
identifying which type of structures are prone to being recognised
and processed by the cellular miRNA-maturation machinery. A
natural way to tackle this problem is to perform clustering over the
candidate structures along with known miRNA precursor structures.
Mixed clusters allows then the identification of candidates that are
similar to known precursors. Given the large number of pre-miRNA
candidates that can be identified in single-genome approaches, even
after applying several filters for precursor robustness and stability, a
conventional structural clustering approach is unfeasible.
Results: We propose a method to represent candidate structures
in a feature space which summarises key sequence/structure
characteristics of each candidate. We demonstrate that proximity in
this feature space is related to sequence/structure similarity, and we
select candidates which have a high similarity to known precursors.
Additional filtering steps are then applied to further reduce the number
of candidates to those with greater transcriptional potential. Our
method is compared to another single-genome method (TripletSVM)
in two datasets, showing better performance in one and comparable
performance in the other, for larger training sets. Additionally, we
show that our approach allows for a better interpretation of the results.
Availability and Implementation: The MinDist method is implemented
using Perl scripts and is freely available at
http://www.cravela.org/?mindist=1 .
Contact: backofen@uni-freiburg.de

1 INTRODUCTION
MicroRNAs (miRNAs) constitute one of several classes of small
RNAs found in plant and animal branches of Eukaryota. Since the

∗to whom correspondence should be addressed

discovery of the first miRNAs inC. elegans(Lee et al., 1993), an
abundant number of these regulatory RNAs (ranging from 18-25 nt
in length) have been discovered and their underlying mechanisms
investigated (for an overview see e.g. Bartel (2009)). MiRNAs
originate from the maturation of larger precursors of∼ 70 nt called
pre-miRNAs.

An important feature of pre-miRNAs that elicits their recognition
by the miRNA-processing machinery is their secondary structure.
Pre-miRNAs typically exhibit a stem-loop structure with few
internal loops or asymmetric bulges but the variety of structures
that are efficiently recognised has escaped any strict characterisation
(Lindow and Gorodkin, 2007). Previously, we proposed a
combination of measures that distinguishes true pre-miRNAs from
the large number of stem-loops that can be found in metazoan
genomes (Mendeset al., 2010). However, the number of precursor
candidates (in the order of a few hundred thousand) obtained
above the optimal cutoff of the score, which combines measures of
stability and robustness, is still impractically large to be subjected to
experimental confirmation (see the CRAVELA framework website
for further details:http:///www.cravela.org ). Despite the
fact that all these candidates consist of or contain stem-loops, the
details of their secondary structure have not been subjected to a
thorough analysis.

The most immediate approach to analysing the variety of pre-
miRNAs in our candidate set is to seek the identification of structural
families amongst the precursor candidates. Although miRNAs have
been grouped into families according to their sequence similarity in
the miRBase database (Griffiths-Joneset al., 2003), this approach
does not give enough insight as to the structural features that are
important for the recognition by the miRNA-processing machinery.
Hence, the grouping has to be performed according to sequenceand
structure. Various algorithmic approaches have been introduced to
determine structural similarities and to derive consensus structure
patterns for structural RNAs with low sequence identity (Siebert and
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Backofen, 2005; Ḧochsmannet al., 2003; Sankoff, 1985; Gorodkin
et al., 1997; Havgaardet al., 2005; Mathews and Turner, 2002;
Bradley et al., 2008; Hofackeret al., 2004; Will et al., 2007;
Heyneet al., 2009; Bompfunewereret al., 2008). A first approach
towards the clustering of miRNAs has been achieved in Kaczkowski
et al. (2009), where a sequence-structure alignment was used to
cluster 220 miRNAs into structural classes. However, all these
approaches suffer from a high computational complexity, with a
time requirement typically betweenO(n4) and O(n6). It is thus
computationally unfeasible to cluster hundreds of thousands of
candidates using this approach.

Thus, instead of trying to cluster the candidate set, we summarise
the structural and sequence features of each candidate using a
vectorial representation and attempt to identify the region of
the feature space most likely to contain hairpins recognised by
the cellular miRNA-processing machinery. Furthermore, using
samples of the candidate set, we show that the relative positions
of the representations of the candidates in the feature space are
reminiscent of the partitions derived from a conventional clustering
performed with the state-of-the-art sequence/structure alignment
tool LocARNA (Will et al., 2007). And, most importantly, we
observe that known precursors are represented in a limited portion
of the feature space.

We use this approach to analyse a set of robust and stable hairpins
extracted from a genome-wide scan (Mendeset al., 2010) of
Anopheles gambiaeandDrosophila melanogaster, greatly reducing
the number of candidates. A further reduction is achieved by
assessing the transcriptional potential of each remaining candidate
and, by additionally restricting our analysis to candidates with the
potential of being part of miRNA genomic clusters, we obtain
a dataset which is small enough to be subjected to experimental
verification.

2 METHODS
In this work, we present an approach to evaluating the sequence and structure
similarity of a very large number of hairpins with an application to the
identification of pre-miRNA candidates. In a first step, we demonstrate that
our vectorial representation of RNA structures and the Euclidian distance
in the multidimensional space consequently defined is comparable to the
sequence/structure similarities identified byLocARNA – a conventional
structural clustering method. In a second step, we observe that known pre-
miRNAs tend to populate a specific region of the multidimensional space
defined by the principal components of a vectorial representation of all
candidate structures. We therefore use the position of known precursors in
this multidimensional space to identify the region of interest and select the
candidates populating it.

2.1 Vectorial representation of sequence and structure
We use a vectorial representation for candidate precursors which summarises
key features of the primary/secondary structure of a given stem-loop. The
representation we chose, after considering several options and selecting
the one that best matched the results of conventional clustering (see
Supplementary materials), consists of a vector of normalised counts. To
build this vector, we use a sliding window of length3 (a triplet) that scans
the precursor candidate (see Fig. 1). At each step, a position in the vector is
incremented. The appropriate vector position is mapped considering whether
each nucleotide within the window and with respect to the MFE structure is
the left/right-hand side of a base-pair, an unpaired nucleotide on the stem,
or part of the terminal loop, and, additionally, which base is present at the
midpoint of the window. We have, thus, a vector with 256 positions. After

(a)
GTGTGTGTGTGTGTGTGTGT

(..((..(....)..))..)

(G, 0, 0, 1)

⇓

(b) (0, 0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . .)

⇓

(c) (0, 0, . . . , 0, 0.1, 0, . . . , 0, 0.05, 0, . . . , 0, 0.1, 0, . . .)

Fig. 1. Example of a vectorial representation.(a) The characteristics of a
single position are determined, which include the nucleotide and whether
the previous, current and following positions in the secondary structure are
unpaired (0), left/right paired (1/2), or located in the terminal loop (3).(b)
Portions of the final vector illustrating the counts. Each vector position refers
to a particular nucleotide type and the neighbouring pairing status, from
(A, 0, 0, 0) to (G, 3, 3, 3). (c) Portions of the normalized vector obtained
from (b), each position is divided by a constant such that the sum of all
components is 1.

scanning the entire precursor, each position in the vector is normalised by
dividing its counts by the length of the sequence.

A similar representation has already been used to represent feature vectors
of RNA stem-loops in the context of training a support-vector machine (Xue
et al., 2005) and was amongst the representations we have considered (see
Supplementary materials). The representation we use here is richer than the
one proposed by these authors in the sense that it distinguishes the situation
where a given position is the left or right-hand side of a base-pair instead
of simply being a paired position and it also represents unpaired nucleotides
in the stem region or the terminal loop differently. In this way, information
about asymmetrical loops and bulges in the stem is captured by the vector
counts.

2.2 Conventional structural clustering
In order to identify clusters of high sequence-structure similarity, we apply
a clustering procedure based on RNA sequence-structure alignment. For this
purpose we usedLocARNA, which is one of the fastest and most accurate
tools for multiple RNA sequence alignment (Willet al., 2007).LocARNA
performs Sankoff-style simultaneous alignment and folding (Sankoff,
1985). This approach generates high-quality alignments that take structural
similarity into account. Notably, the structural information is not requireda
priori but can be inferred, in parallel to the alignment process, based on an
RNA free energy model.LocARNAachieves its short run-times for pairwise
alignment because it needs to consider only significant base pairs. The
associated cluster pipeline generates a hierarchical cluster tree by applying
an average-linkage clustering (UPGMA) to the matrix of pairwiseLocARNA
distances. This pipeline was validated by a re-clustering of Rfam and could
reproduce Rfam families with good precision at high average recall.

In the case of clustering microRNA candidates, we do not have any prior
knowledge of clusters. Therefore, we need to define a reasonable partitioning
of the cluster tree into an optimal number of clusters. For this purpose, we
apply a variant of the Duda rule (Dudaet al., 2001) implemented in the tool
RNAsoup (http://www.bioinf.uni-leipzig.de/\˜kristin/
Software/RNAsoup/ ). To this purpose, a subtree is reported as
an optimal cluster if the sum-of-squared errors for two clusters is not
significantly smaller than what is expected by chance (Kaczkowskiet al.,
2009). The significance level can be controlled byk. The larger is the value
of k, the larger the difference of squared error allowed before a subtree is
split into two clusters. In our case, the error of a cluster is determined via
the free energy of its consensus structure and the minimum free energies
of its individual sequences. The minimum free energy of single sequences
is calculated by RNAfold (Hofackeret al., 1994). The consensus structure
and energy are calculated by RNAalifold (Hofackeret al., 2002) based on a
multipleLocARNAalignment of the subtree.
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2.3 PCA of vectorial representations
The vectorial representation of the stem-loop structures used in this work
captures information about sequence/structure features but, in general, the
dimensions of these feature vectors are not independent. Furthermore,
all vectors will always have zero values in some dimension as some
combinations of left/right-hand paired and unpaired nucleotides are not
possible in actual RNA structures. In order to reduce the number of
dimensions and to ensure we represent our structures in a space with
independent dimensions, we readily eliminate dimensions with zero
variance. In practice, for a sufficiently large dataset, this will only
eliminate dimensions for which all vectors have a value of zero. Over the
remaining dimensions, we perform a principal component analysis (PCA)
thus obtaining a space of linearly independent coordinates. Additionally,
each dimension of the vectorial representation is scaled to unit variance
before performing the PCA.

2.4 Evaluation
2.4.1 Randomisation procedureA randomisation procedure is used
to compare our approach to the results obtained for samples of the datasets
using conventional structural clustering in terms of the proportion of
correctly assigned cluster members. This procedure allows us to estimate
the likelihood that our values were obtained by chance or as a result of
the way our candidates are spatially distributed in the principal components
space. To obtain the proportion of correctly assigned cluster members in
the randomised version of the samples, we keep each candidate in the same
position of the principal components space but we shuffle their identities,i.e.,
we randomly select two candidates and we swap their coordinates, repeating
the process until all candidates have had their coordinates swapped. After
having performed the random swapping of candidates, we calculate the
centroids of each cluster in the shuffled space and the resulting proportion
of correctly assigned cluster members.A similar procedureis used to
obtainrandomsamplesof themediandistanceof knownprecursorsto their
centroid.

2.4.2 Sampling the datasets for performance evaluationTo assess
the performance of both our method and TripletSVM, four groups of samples
of different sizes were prepared for each dataset. Each sample group was
divided in training sets and testing sets, both with the same number of
positive and negative examples. Each sample group is made of 1000 samples.
The positive examples in the training set of each sample are a random subset
of apoolof knownmiRNAs,with asinglerepresentativepermiRNA family
(either 5%, 10%, 20% or 50% ofthepool) and the remaining pre-miRNAsin
thepool make up the positive examples of the corresponding testing set. The
negative examples in both the training and testing sets of each sample are
random subsets of the candidates having the same size of the corresponding
positive examples. Our method uses only the positive examples in the
training set as a reference from which to compute the distance to the elements
in the testing set, whereas TripletSVM, for each sample, is trained using both
the positive and negative examples of the training set and is evaluated against
the testing set.

3 DISCUSSION

3.1 Vector representation reflects structural clustering
To assess the adequacy of our approach with respect to its ability
to identify regions of structural similarity in a way that resembles
conventional sequence/structure clustering, we adopt the following
procedure. We useLocARNA to perform hierarchical structural
clustering over 100 samples of 1000 randomly chosen stem-loops
drawn from theD. melanogasterandA. gambiaedatasets, always
including the entire set of known miRNAs for each organism, and
we determine the optimal partition into clusters applying a tree node
evaluation rule for various significance levels calledk-levels (the

k-level A. gambiae D. melanogaster
Corr. assign. p-value Avg. cl. size Corr. assign. p-value Avg. cl. size

0.00 83.60% 8.58e-87 3.05 82.10% 3.45e-125 3.29
0.10 82.50% 1.69e-87 3.33 81.24% 1.92e-120 3.54
0.20 81.21% 8.68e-84 3.70 80.01% 4.31e-113 3.89
0.30 79.30% 2.37e-76 4.27 78.24% 3.31e-108 4.44
0.40 77.09% 9.22e-65 5.31 76.08% 1.64e-96 5.44
0.50 74.12% 2.24e-55 7.61 72.80% 1.43e-84 7.54
0.60 71.23% 2.76e-42 12.09 69.45% 1.01e-61 11.44
0.70 68.70% 1.05e-31 17.24 67.41% 1.74e-54 15.32
0.80 68.14% 6.01e-26 19.52 66.07% 9.62e-44 17.77
0.90 67.37% 2.57e-22 21.08 65.72% 4.01e-37 20.09

Table 1. Evaluation of vectorial representations. For eachk-level, the
table shows the percentage of correct assignments in the datasets ofA.
gambiaeand D. melanogaster, thep-value of Welch’s two-sample t-test
comparing the observed correct assignments with a randomised version
of each dataset shuffling the correspondence between candidates and their
vectorial representation, and the average number of cluster members.

details of this procedure are described in the Methods section). For
low values ofk, the procedure produces clusters with highly similar
structures. An increasing value ofk allows for more dissimilar
structures to be included in the same cluster, therefore producing
a lower number of clusters with an increasing number of structures.

We then represent each structure from the samples using a
vectorial representation summarising sequence/structural features,
in an effort to capture the key elements distinguishing the
various hairpins. These feature vectors contain, however, both
interdependent dimensions and dimensions with different variance.
To obtain a linearly independent set of dimensions, we perform
a principal components analysis (PCA) over the vectorial
representations mapping them to their principal components
representation (feature space).

To determine whether our representation of the candidates in the
principal components space reflects the structural clusters found by
LocARNA for the differentk-levels, we calculate the proportion of
correct assignments, which measures the ratio of cluster members
that are closer to their assigned cluster centroid as opposed to
a centroid of another cluster. The cluster centroid is calculated
by determining the average position of the cluster members each
dimension at a time. The distribution of this measure in our 100
samples is then compared to its distribution in a randomised version
of our spatial representation of the candidates, where candidate
positions are kept but candidate identities are shuffled.

The comparison with the randomised version of the spatial
distribution of candidates allows us to address the fact that the
significance of the absolute distances of each candidate to its cluster
centroid in the feature space can only be determined comparatively.
For instance, some clusters may have only one member, in which
case it will always coincide with its cluster centroid and, more
generally, it may happen that variations in distance of a candidate to
its assigned cluster centroid for differentk-levels, or even different
vectorial representations, may partially reflect the overall density of
the candidates rather than a better evaluation of structural similarity.

Table 1 shows that, for both datasets, a large proportion of
cluster members are found closer to their cluster centroid than to the
centroid of any other cluster. For the most heterogeneous clusters
which are obtained atk-level 0.90 the proportion of correctly
assigned cluster members is about two-thirds, and it rises above 80%
for the structurally more homogeneous clusters obtained atk-level
0.00. The comparison with the randomised datasets shows that the
results are statistically significant, i.e., these results are well above
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what one would hope to obtain by chance or simply due to the way
candidates are spatially distributed.

3.2 Known precursors are clustered together
Using the same samples from the datasets presented in the previous
section, we can observe that despite the fact that not all known
precursors are grouped together in the same cluster byLocARNA
at anyk-level (data not shown), they are however significantly close
and restricted to a limited portion of the features space. In fact, if we
take the centroid of the known precursors and calculate the median
distance of each known precursor to the centroid, we obtain a value
which is much smaller than what would be expected by chance
(p-value =8.00 × 10−60 for A. gambiae, p-value=8.94 × 10−71

for D. melanogaster, estimatedusingthe randomisationprocedure
describedin section 2.4.1).

3.3 Distance to known precursors is good predictor
The results shown in the previous section suggest that known
precursors tend to concentrate in a particular region of the feature
space. This region, however, is also densely populated by other
precursor candidates. Sincethe region where known precursors
are found is inserted in an area of great density, it cannot be
identified by a purely unsupervised approach. Therefore we take
the coordinates of all known precursors and use them to identify the
closest candidates. This method has the advantage of allowing for
different pre-miRNA structural clusters to emerge around subsets of
known precursors. The number of candidates that are included in the
acceptance region is controlled by the maximum distance allowed to
the closest pre-miRNA.

The larger the permitted distance, the greater the chance of
selecting a region that includes all interesting candidates, but at the
expense of enlarging the number of false positives. The Youden
index (Youden, 1950),J , defined asmaxc {TPR(c)− FPR(c)},
i.e., the maximum difference between the true positive rate (TPR)
and the false positive rate (FPR) over all cutoff values,c, is a
standard method to select the best compromise in such a trade-
off. The optimal cutoff value,c∗, is the cutoff for whichJ =
TPR(c∗) − FPR(c∗).

To estimate the optimal cutoff, we consider subsets of known
precursors as reference and calculate the true/false positive rate with
respect to the remaining known precursors and other candidates (see
detailed description in the Methods section). Fig. 2 shows the ROC
curves forA. gambiaeand D. melanogasterwhen using samples
of 5%, 10%, 20%, and 50% of known precursors as reference and
computing the trade-off between the true/false positive rates with
respect to the remaining precursors and an equal number of sampled
candidates. Each figure shows the ROC curves of 1000 such samples
as well as the average curve, computed as the average performance
over all samples across the full range of cutoff values. Additionally,
the figures also show the average performance of our method,
computed as the average TPR and FPR across all samples for the
optimal cutoff on each sample (note that this may be significantly
different from the optimal cutoff calculated on the average ROC
curve).

The optimal cutoff in each of these ROC curves can be interpreted
as the best choice of maximum distance allowed between a structure
and the closest precursor so that the former may be included in
the acceptance region. We have observed that there is a log-linear
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Fig. 2. ROC curvesfor the minimum distance(MinDist) to pre-miRNAs
methodand the performanceof TripletSVM over 4000 samplesequally
dividedinto 4 groups. Each group uses 5%, 10%, 20% or 50% of the known
precursors of(a) A. gambiaeand(b) D. melanogasterto set up the positive
examples of the training set. The positive examples of the testing set are
made up by the remaining precursors. In both sets, the negative examples are
samples of the set of candidates. ROC curves for each individual sample are
shown in dashed lines and the average curve across the range of cutoff values
is shown in a solid line. The red dot represents the average performance of
the MinDist method over all samples considering the optimal cutoff for each
sample. The green dots represent the performance of TripletSVM on each
sample, whereas the green diamond refers to its average performance

relation between the value of the average optimal cutoff and the
percentage of known precursors that is used as reference (R2 =
0.998, for A. gambiae, andR2 = 0.989, for D. melanogaster).
Since the best choice of cutoff cannot be directly determined for the
entire set of known precursors, we estimate it by extrapolating the
log-linear model. The estimated optimal cutoff can be interpreted
as the best choice of maximum distance to include additional (yet
unknown) precursors with the least number of false positives.
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% known A. gambiae D. melanogaster
MinDist TripletSVM MinDist TripletSVM

Sens. Spec. F1 Sens. Spec. F1 Sens. Spec. F1 Sens. Spec. F1

5 % 0.72 0.68 0.71 0.63 0.57 0.61 0.70 0.71 0.70 0.69 0.74 0.71
10 % 0.72 0.68 0.71 0.64 0.73 0.67 0.70 0.72 0.71 0.70 0.80 0.74
20 % 0.71 0.71 0.71 0.67 0.69 0.68 0.70 0.73 0.71 0.71 0.83 0.76
50 % 0.71 0.74 0.72 0.66 0.76 0.69 0.72 0.75 0.73 0.70 0.86 0.76
80 % 0.70 0.80 0.74 0.64 0.78 0.69 0.75 0.75 0.75 0.69 0.86 0.75
90 % 0.74 0.82 0.77 0.63 0.78 0.68 0.77 0.78 0.77 0.68 0.87 0.75
95 % 0.83 0.79 0.81 0.64 0.78 0.69 0.79 0.81 0.80 0.68 0.87 0.75

Table 2. Sensitivity (TPR), Specificity (1 - FPR) and the F1 measure
“

2
TP/(TP+FP )∗TPR
TP/(TP+FP )+TPR

”

of TripletSVM and MinDist computed as the

average performance across all samples for training sets whose positive
examples consist of a fraction of known pre-miRNAs in

A. gambiaeandD. melanogaster

Using the estimated optimal cutoffs, the selected regions include
23.5% (77 366) and 23.5% (67 619) of all candidates from theA.
gambiaeandD. melanogasterdatasets, respectively.

3.4 Comparison to other methods
TripletSVM (Xue et al., 2005) is a classifier based on a support
vector machine (SVM) that purports to determine whether a given
stem-loop is a pre-miRNA. The features considered by this SVM
are quite similar to those of the TRIPLETS vectorial representation
that is described in the Supplementary Materials. It is also, to our
knowledge, the only single-genome method whose source code is
made available and which includes the necessary routines to re-
train the model with new data. Many other single-genome methods
exist (Mendeset al., 2009), but their time complexity makes their
use in the classification of hundreds of thousands of candidates
unfeasible. TripletSVM was trained using positive examples from
samples of known precursors and negative examples from samples
from the candidate set (a detailed description is given in the
Methods section). A graphical representation of the performance of
TripletSVM in each of the 4000 samples (evenly distributed between
training sets using 5%, 10%, 20%, and 50% of the annotated pre-
miRNAs), as well as the average performance in each group of
samples, is shown in Fig. 2. Table 2 shows the sensitivity, specificity
and theF1 measure for TripletSVM as well as our method across
training sets including varying proportions (from 5 to 95%) of
known precursors.

The average performance of our method inA. gambiaeis superior
to that of TripletSVM, and slightly worse inD. melanogaster,
except for sample groups containing a greater number of known
precursors. The slightly better performance of TripletSVM in the
D. melanogasterdataset is the result of a tendency for having
comparatively higher specificity but similar sensitivity. This is
probably due to the fact that MinDist is sensitive to the inclusion
of heterochromatic sequences in this dataset, which introduces
greater variability in terms of sequence/structure features. As a
consequence, the variation between the features of pre-miRNAs
and those of other stem-loops with more regular features becomes
less apparent. It is worth noting, however, that despite achieving a
slightly better average performance inD. melanogasterfor sample
groups containing a lower number of known precursors, the actual
performance of TripletSVM in these samples varies greatly from
one sample to the other, alternating between very good and very
poor performances, particularly for the 5% sample group, as is
shown in Fig. 2(b), which is a major disadvantage when exploring
recently sequenced genomes, for which few clear homologs with

which to seed the search for new pre-miRNAs are generally
available.

TripletSVM also bears the inconvenience of requiring negative
examples which are inevitably chosen under the assumption –
however plausible and defensible – that miRNA precursors are
rare with respect to the overall number of candidates, but one
cannot generally guarantee that hairpins which would normally
be processed by the miRNA-maturation pathway are not being
included in the negative training set.Our approach,despite
assumingall candidatesto be false positivesfor the purposesof
performanceevaluation,does not use this information to shape
the acceptanceregion and, since it doesnot try to identify the
optimal marginbetweenpositiveandnegativeexamples,it is also
lesslikely to suffer from overtraining. Additionally,by reflecting
sequence/structure similarity in a way comparable to conventional
structural clustering, our method offers a better interpretation of the
decision rule that is made when selecting candidates.

3.5 Transcriptional potential assessment further
restricts the number of candidates

The number of candidates obtained after our structural analysis
(77 366 forA. gambiae, and 67 619 forD. melanogaster), albeit
considerably lower than the original candidate set (328 829 forA.
gambiae, and 287 469 forD. melanogaster), is still quite numerous.
A plausible interpretation of these results is that, despite their
structural similarity to known precursors, the majority of these
candidates are not pre-miRNAs due to other factors. Chiefly among
these is the fact that most remaining candidates are probably not
efficiently transcribed or are playing different biological roles. This
illustrates the often ignored distinction between having an adequate
secondary structure and actually being transcribed and processed.

A straightforward way to address the need to assess the
transcriptional potential of the candidates is the observation that
many fall within regions that have been annotated. Genomic
locations with no annotation or which have been annotated as
introns may contain miRNA precursors, but candidates which
overlap regions annotated as exons, transposons or other non-coding
RNAs are less likely to contain pre-miRNAs. If we filter out non-
viable candidates by this criterion, our candidate set is reduced to
44 210 forA. gambiaeand 40 582 forD. melanogaster.

If we additionally restrict our search to putative miRNA cluster
members, which are very common genomic organisations of
miRNA precursors in metazoans, we can lower the number of
candidates by considering only those which are found in the vicinity
of known pre-miRNAs. The price to pay for this reduction is that
we risk missing yet unidentified miRNAs which happen to occur
in genomic locations far from previously identified precursors, or
which are not part of a miRNA cluster. By selecting candidates
with viable annotation and at a genomic distance not greater than
50 kb (as suggested in Baskerville and Bartel (2005)) from pre-
miRNAs, we reduce our candidate set to 439 forA. gambiaeand
1 604 forD. melanogaster.

After having determined, for each dataset, the reduced list of
candidates, a more detailed analysis was performed for two different
approaches, both usingLocARNAas a method to perform structural
hierarchical clustering of our candidates along with the annotated
precursors. Unlike before, we do not use a parameterised partition
rule to enumerate our clusters at differentk-levels. Instead, we use
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criteria aimed at identifying miRNA genomic clusters. The first
approach consists in identifying, starting from the leaves of the
similarity tree, the smallest structural clusters that include at least
one known precursor, and within these clusters we enumerate all
subsets of stem-loops that are located in close genomic proximity
to each of the precursors in the structural cluster. This way we
can identify the candidates which are both structurally similar
and occurring close to each given precursor in the genome. The
second approach drops the requirement that a known precursor be
present and simply identifies leaves in theLocARNAsimilarity tree,
extracting the top-scoring clusters in terms of SCI (Washietlet al.,
2005) (Structure Conservation Index). Additionally, we enumerate
all subsets of stem-loops that are in close genomic proximity to
each other, regardless of whether a known pre-miRNA is present.
This way we try to identify candidates which are both similar and in
the vicinity of one another. Subsets of stem-loops identified in the
second approach which happen to be included in the output of the
first approach are discarded.

The first approach identifies 108 and 422 candidates in
the extracted clusters fromA. gambiaeand D. melanogaster,
respectively, of which 5 and 11 were in the genomic vicinity of the
precursors included in their respective clusters. A total of 9 and 23
potential genomic clusters of pre-miRNAs (not to be confused with
structural clusters) corresponding to the relevant subsets of stem-
loops of each structural cluster were identified using this approach
for A. gambiaeandD. melanogaster. Respectively, 4 and 13 were
composed entirely of known pre-miRNAs at a median distance of
3 327 and 237.5 bp while 5 and 10 contained precursor candidates
at a median distance of 12 424 and 22 820 bp (see Supplementary
materials for the list of most promising cluster candidates). The
genomic clusters exclusively made up of precursors, as the one
shown in Fig. 3(a), attest the ability of our method to identify
structurally homogenous pre-miRNA genomic clusters while the
clusters which include new candidates, as seen in Fig 3(b), may
indicate new instances of this type of genomic organisation and
plausible miRNA precursors.

The second approach, which purports to identify potential
genomic clusters where all members are non-annotated is, naturally,
limited to those candidates which happen to be included in the
initial set and are therefore close to known precursors in the
genome, but which are structurally more similar to each other
than to any pre-miRNA. This approach identified 481 and 1618
candidates in the extracted structural clusters forA. gambiae
and D. melanogaster, respectively, of which 81 and 147 were
not more than 50 kb away from another stem-loop in the same
structural cluster. The potential genomic clusters identified for
this approach total 7 and 65 at a median distance of 17 880 and
12 797 bp, respectively forA. gambiaeand D. melanogaster.
Interestingly, there are several instances of identical or highly
similar candidates in both datasets that make up genomic clusters.
Some of these clusters (see Supplementary materials) have up to
three identical candidate members and are evenly spaced across the
genome. They are either the result of a duplication event (more
specifically, triplication) or they correspond to instances of long
repeats, transposons or other repeat sequences. In any case, the fact
that they were selected based on their structural similarity to known
pre-miRNAs hints at the closeness of these structures and supports
the much discussed possibility that repetitive sequences may serve

Cluster (2 structures)

aga-mir-13b aga-mir-2-2 consensus
id: p4048101 id: p4048102 structure

miRNA miRNA SCI: 1.12
2L:R:37757564:37757657 2L:R:37758699:37758796 MPI: 50.50

locARNA alignment

Genomic context

94bp 98bp
1041bp

(a) Genomic cluster of known pre-miRNAs inA.
gambiae

Cluster (2 structures)
candidate dme-mir-1000 consensus

id: c4291534 id: p5374294 structure

intergenic miRNA SCI: 1.02
3R:R:21410685:21410784 3R:R:21414581:21414680 MPI: 25.23

locARNA alignment

Genomic context

100bp 100bp
3796bp

(b) Putative genomic cluster inD. melanogaster

Fig. 3. Genomic clusters of pre-miRNAs. Shown are the secondary structure
of both stem-loops, the consensus structure along with the SCI (structure
conservation index) and the MPI (mean pairwise identity), theLocARNA
alignment and a representation of their genomic loci.

as a dormant repository of stem-loops which could be co-opted as
pre-miRNAs (Smalheiser and Torvik, 2005).

4 CONCLUSION
We have presented a method to assess the sequence/structures
similarity of a large dataset of hairpins in search for novel pre-
miRNAs and we have placed these candidates in a multidimensional
space in a way that reflects their structural characteristics. The
portion of the multidimensional space selected around the known
pre-miRNAs purports to include most structures which have the
potential of being efficiently recognised by the cellular miRNA-
processing machinery.

The fact that this region is very dense in terms of the number
of precursor candidates it contains tells us that a large number of
genome locations have the potential to generate stable and robust
structures which present sequence/structure similarities to known
pre-miRNAs. The use of annotation information helps reducing the
number of selected candidates but after this filtering step, which is
nevertheless dependent on the quality and breadth of the available
annotation data, they remain in the tens of thousands. Therefore,
there is either an exceedingly large number of pre-miRNAs in
these datasets or, more plausibly, most of these candidates are not
efficiently transcribed but could otherwise be recognised as miRNA
precursors.
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The initial set of candidates extracted from the genomes ofA.
gambiaeandD. melanogasterand described in Mendeset al.(2010)
consisted of2 245 014 and1 316 305 candidates, respectively. The
total number of candidates, after applying stability and robustness
measures described in earlier work and the structural analysis along
with the annotation filtering detailed in this paper, is reduced by two
orders of magnitude to44 210 and40 582.

Unlike many machine learning approaches to the identification of
miRNA precursors that use features of the sequence and secondary
structure to provide a classifier, our approach does not need to
postulate a set of negative examples. In fact, we contend that
if the purpose is to characterise the structures which have the
potential of being recognised by the enzymes involved in miRNA
maturation, one needs to reduce one’s dependence on the positive
set as well, since it will most likely not be representative – it suffices
to observe that the set of recognisable structures is surely larger
than the set of all the pre-miRNAs contained in the genome and
that these two sets are subject to different evolutionary constraints.
In our work, information about known precursors is used merely to
pinpoint a region of interest in our multidimensional representation
of sequence/structure features. Admittedly, this approach is not
guaranteed to identify the entire portion of the feature space where
structures recognisable by the miRNA processing machinery are
located, since such a subspace is surely much larger than the
examples that could ever be instantiated in any genome. However,
our method outperforms a machine learning approach based on
a support vector machine in one dataset and has comparable
performance in the other, for larger training sets. For sample groups
with a greater number of positive examples it outperforms the
machine learning method in both datasets.

One can further limit the candidates to those occurring in
the genomic vicinity of known precursors and which could,
therefore, be part of miRNA clusters together with pre-documented
pre-miRNAs. This approach produces a greatly reduced set of
candidates (439 for A. gambiae, and1 604 for D. melanogaster),
even using a very liberal definition of miRNA cluster. This
significant reduction of the number of candidates, albeit at
the expense of the ability to identify novel miRNAs located
elsewhere in the genome, elicits both the possibility of experimental
validation and further detailed computational analyses. To this
effect, it was possible to identify several plausible miRNA clusters
with structurally similar stem-loops by performing conventional
structural clustering over this reduced set, along with an analysis
of their genomic disposition.
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a Cîencia e a Tecnologia (INESC-ID multiannual funding) through
the PIDDAC Program funds and by PTDC program [PTDC/AGR-
GPL/098179/2008]. The contributions of NM and MFS were funded
by the Agence Nationale de la Recherche [BRASERO project
BLAN06-3 138859, MIRI project BLAN08-1 335497] as well as by
the ERC AdG SISYPHE held by MFS. This work was also funded
by the German Research Foundation [DFG grants BA 2168/3-
1, BA 2168/4-1 to RB], the Excellence Initiative of the German
Federal and State Governments [grant EXC 294 to RB], and SH
was supported by the German Federal Ministry of Education and

Research [BMBF grant 0313921 to RB].

REFERENCES
Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory

functions.Cell, 136(2), 215–33.
Baskerville, S. and Bartel, D. P. (2005). Microarray profiling

of microRNAs reveals frequent coexpression with neighboring
miRNAs and host genes.RNA, 11(3), 241–247.

Bompfunewerer, A. F., Backofen, R., Bernhart, S. H., Hertel, J.,
Hofacker, I. L., Stadler, P. F., and Will, S. (2008). Variations on
RNA folding and alignment: lessons from Benasque.Journal of
Mathematical Biology, 56(1-2), 129–144.

Bradley, R. K., Pachter, L., and Holmes, I. (2008). Specific
alignment of structured RNA: stochastic grammars and sequence
annealing.Bioinformatics,24(23), 2677–83.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001).Pattern
Classification. John Wiley & Sons, INC.

Gorodkin, J., Heyer, L. J., and Stormo, G. D. (1997). Finding the
most significant common sequence and structure motifs in a set
of RNA sequences.Nucleic Acids Research,25(18), 3724–32.

Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., and
Eddy, S. R. (2003). Rfam: an RNA family database.Nucleic
Acids Research,31(1), 439–41.

Havgaard, J. H., Lyngso, R. B., Stormo, G. D., and Gorodkin, J.
(2005). Pairwise local structural alignment of RNA sequences
with sequence similarity less than 40%.Bioinformatics,21(9),
1815–24.

Heyne, S., Will, S., Beckstette, M., and Backofen, R. (2009).
Lightweight comparison of RNAs based on exact sequence-
structure matches.Bioinformatics,25(16), 2095–2102.

Höchsmann, M., T̈oller, T., Giegerich, R., and Kurtz, S. (2003).
Local similarity in RNA secondary structures. InProceedings
of Computational Systems Bioinformatics (CSB 2003), volume 2,
pages 159–168. IEEE Computer Society.

Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, S., Tacker,
M., and Schuster, P. (1994). Fast folding and comparison of RNA
secondary structures.Monatshefte Chemie, 125, 167–188.

Hofacker, I. L., Fekete, M., and Stadler, P. F. (2002). Secondary
structure prediction for aligned RNA sequences.Journal of
Molecular Biology, 319(5), 1059–66.

Hofacker, I. L., Bernhart, S. H., and Stadler, P. F. (2004). Alignment
of RNA base pairing probability matrices. Bioinformatics,
20(14), 2222–7.

Kaczkowski, B., Torarinsson, E., Reiche, K., Havgaard, J. K.,
Stadler, P. F., and Gorodkin, J. (2009). Structural profiles of
human miRNA families from pairwise clustering.Bioinformatics,
25(3), 291–4.

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans
heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14.Cell, 75(5), 843–54.

Lindow, M. and Gorodkin, J. (2007). Principles and limitations
of computational microRNA gene and target finding.DNA Cell
Biology,26(5), 339–51.

Mathews, D. H. and Turner, D. H. (2002). Dynalign: an
algorithm for finding the secondary structure common to two
RNA sequences.Journal of Molecular Biology, 317(2), 191–203.

Mendes, N. D., Freitas, A. T., and Sagot, M.-F. (2009). Current tools
for the identification of miRNA genes and their targets.Nucleic

7

 at U
niversitaet Freiburg on O

ctober 22, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


Acids Res, 37(8), 2419–33.
Mendes, N. D., Freitas, A. T., Vasconcelos, A. T., and Sagot, M.-

F. (2010). Combination of measures distinguishes pre-miRNAs
from other stem-loops in the genome of the newly sequenced
Anopheles darlingi.BMC Genomics,11, 529.

Sankoff, D. (1985). Simultaneous solution of the RNA folding,
alignment and protosequence problems.SIAM J. Appl. Math.,
45(5), 810–825.

Siebert, S. and Backofen, R. (2005). MARNA: multiple alignment
and consensus structure prediction of RNAs based on sequence
structure comparisons.Bioinformatics,21(16), 3352–9.

Smalheiser, N. R. and Torvik, V. I. (2005). Mammalian microRNAs
derived from genomic repeats.Trends Genetics, 21(6), 322–6.

Washietl, S., Hofacker, I. L., and Stadler, P. F. (2005). Fast and
reliable prediction of noncoding RNAs.Proceedings of National
Academy of Sciences USA, 102(7), 2454–9.

Will, S., Reiche, K., Hofacker, I. L., Stadler, P. F., and Backofen,
R. (2007). Inferring non-coding RNA families and classes
by means of genome-scale structure-based clustering.PLOS
Computational Biology, 3(4), e65.

Xue, C., Li, F., He, T., Liu, G.-P., Li, Y., and Zhang, X. (2005).
Classification of real and pseudo microRNA precursors using
local structure-sequence features and support vector machine.
BMC Bioinformatics, 6, 310.

Youden, W. J. (1950). Index for rating diagnostic tests.Cancer,
3(1), 32–35.

8

 at U
niversitaet Freiburg on O

ctober 22, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/



