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Abstract. We describe decomposition during search (DDS), an inte-
gration of and/or tree search into propagation-based constraint solvers.
The presented search algorithm dynamically decomposes sub-problems
of a constraint satisfaction problem into independent partial problems,
avoiding redundant work.
The paper discusses how DDS interacts with key features that make
propagation-based solvers successful: constraint propagation, especially
for global constraints, and dynamic search heuristics.
We have implemented DDS for the Gecode constraint programming li-
brary. Two applications, solution counting in graph coloring and protein
structure prediction, exemplify the benefits of DDS in practice.

1 Introduction

Propagation-based constraint solvers owe much of their success to a best-of-
both-worlds approach: They combine classic AI search methods with advanced
implementation techniques from the Programming Languages community and
efficient algorithms from Operations Research. Furthermore, the CP community
has developed a great number of propagation algorithms for global constraints.

In this paper, we present how to integrate and/or search into propagation-
based constraint solvers. We call the integration decomposition during search
(DDS). We take full advantage of all the features mentioned above that make
propagation-based constraint solvers successful. The most interesting points, and
main contributions of our paper, are how DDS interacts with and benefits from
constraint propagation, especially in the presence of global constraints, and dy-
namic search heuristics.

Related work. Only recently, counting and exhaustive enumeration of solutions
of a constraint satisfaction problem (CSP) gained a lot of interest [1,3,10,19]. In
general, the counting of CSP solutions is in the complexity class #P, i.e. it is even
harder than deciding satisfiability [18]. This class was defined by Valiant [21]
as the class of counting problems that can be computed in nondeterministic
polynomial time. Notwithstanding the complexity, there is demand for solution
counting in real applications. For instance, in bioinformatics counting optimal
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protein structures is of high importance for the study of protein energy land-
scapes, kinetics, and protein evolution [22] and can be done using CP [2].

Already folklore, standard solving methods for CSPs like Depth-First Search
(DFS) leave room for saving redundant work, in particular when counting all
solutions [11]. Recent work by Dechter et al. [10,16] introduced and/or search for
solution counting and optimization, which makes use of repeated and -decomposi-
tion during the search following a pseudo-tree. Their work thoroughly studies
and develops a rich theory of and/or trees.

While not in the context of general constraint propagation, similar ideas were
discussed before for SAT-solving [3,7,15]. The SAT approaches also introduce
the idea of analyzing the induced dependency structure dynamically during the
search. This avoids redundancy that occurs due to the emergence of independent
connected components in the dependency graph during the search.

Motivation and contribution. The motivation for this paper is to tackle the
same kind of redundancy for solving very hard real world problems, such as the
counting of protein structures, that require a full-fledged constraint program-
ming system. This requests for a method which is tailored for integration into
modern CP systems and directly supports features such as global constraints and
dynamic search heuristics. To make use of the statically unpredictable effects of
constraint propagation and entailment, the presented method avoids redundant
search dynamically.

Our main contribution is to present how to integrate and/or tree search into
a state-of-the-art, propagation-based constraint solver. We describe decomposi-
tion during search (DDS) on different levels of abstraction, down to concrete
implementation details.

In detail, we stress the impact that constraint propagation has on decompos-
ability of the constraint graph, and how DDS interacts (and works seamlessly
together) with propagators for global constraints, the workhorses of modern
propagation-based solvers. The practical value of DDS is shown empirically, us-
ing a well integrated and competitive implementation for the Gecode library [12].

Overview. The paper starts with a presentation of the notations and concepts
that are used throughout the later sections. In Sec. 3, we briefly recapitulate
and/or search, and then present, on a high level of abstraction, decomposition
during search (DDS), our integration of and/or search into a propagation-based
constraint solver. Sec. 4 deals with the interaction of DDS with propagation and
search heuristics, and Sec. 5 discusses how global constraints interact with DDS.

On a lower level of abstraction, Sec. 6 sketches the concrete implementation
of DDS using the Gecode C++ constraint programming library. With the help
of our Gecode implementation, we study the practical impact of DDS in Sec. 7
by counting solutions for random instances of two important CSPs, graph color-
ing and protein structure prediction. Both examples are hard counting problems
(in class #P). The study shows high average speedups and reductions in search
tree size, even using our prototype implementation. These two sections therefore
provide evidence that DDS can be integrated into a modern constraint program-
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ming system in a straightforward way. The paper finishes with a summary and
an outlook on future work in Sec. 8.

2 Preliminaries

This section defines the central notions that we want to use to talk about con-
straint satisfaction problems.

A Constraint Satisfaction Problem (CSP) P is a triple (X ,D, C), where
X = {x1, . . . , xm} is a finite set of variables, D a function of variables to their
associated value domains, and C a set of constraints. An n-ary constraint c ∈ C is
defined by the tuple of its n variables vars(c) and a set of n-tuples of the allowed
value combinations. We feel free to interpret vars(c) as the set of variables of
c. A domain D entails a constraint c iff all possible value combinations of the
variable domains of vars(c) in D are allowed tuples for c. A solution of a CSP
is an assignment of one value v ∈ D(xi) to each variable xi ∈ X such that all
c ∈ C are entailed. The set of solutions of a CSP P is denoted by sol(P ).

Based on these definitions some important properties of a CSP can be defined.
A CSP P = (X ,D, C) is solved iff ∀x ∈ X : |D(x)| = 1 and sol(P ) 6= ∅. P is failed
iff sol(P ) = ∅ and satisfiable otherwise. A CSP P ′ is stronger than P (P ′ ⊑ P )
iff sol(P ′) = sol(P ) and ∀x ∈ X ′ : D′(x) ⊆ D(x).

The constraint graph of a CSP P = (X ,D, C) is a hypergraph GP = (V, E),
where V = X and E = {vars(c) | c ∈ C}.

3 Decomposition During Search

In this section, we recapitulate and/or tree search. Then, we present a high-level
model of how to integrate and/or tree search into a propagation-based constraint
solver. We call this integration decomposition during search (DDS).

3.1 And/or tree search

Let us look at an example to get an intuition for and/or search. Assume P =
(X ,D, C) with X = {A, B, C, D}, D(A) = {3, 5}, D(B) = {3, 4}, D(C) =
D(D) = {1, 2}, and C = ‘A, B, C, D are different’. Figure 1 presents a corre-
sponding search tree for a plain depth-first tree search. Each node is a propa-
gated sub-problem of P and is visualized as a constraint graph. As usual, a node
is equivalent to the disjunction of all its children.

Even this tiny example demonstrates that plain DFS may perform redundant
work: The partial problem on the variables C and D is solved redundantly for
each solution of the partial problem on A and B. We say that {A, B} and {C, D}
are independent sets of variables.

The central idea of and/or tree search [10] is to detect independent partial
problems during search, to enumerate partial solutions of the partial problems in-
dependently, and finally to combine them to solutions, or to compute the number
of solutions. That way, each independent partial problem is searched only once.
The name and/or search stresses that the search tree contains both disjunctive,
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Fig. 1. DFS search tree.

choice nodes and conjunctive nodes, representing decompositions. Figure 2 shows
a search tree for the same CSP as in Figure 1, but using and/or search. For now,
you can read the big X as “combine”. Here, the search tree contains only one
decomposition and two choices, instead of five choices in Figure 1. In general,
the amount of redundant work can be exponential in the size of the CSP.

3.2 Integrating and/or search into a propagation-based solver

From a bird’s eye view, and/or search can be done easily in the context of
propagation-based constraint solving. Algorithm 1 counts all solutions of a CSP P ,
decomposing the problem where possible.

Ignoring line 5 for a moment, the algorithm runs a standard depth-first search
(DFS). The function Propagate in line 2 performs constraint propagation: it
maps a CSP P = (X ,D, C) to a CSP P ′ = (X ,D′, C′) such that P ′ ⊑ P .
Propagate may remove entailed constraints from C. If P ′ is failed or solved,
we just return that we found no resp. one solution (lines 3,4). Otherwise (line 6),
we split the problem into LeftChoice(P ′) and RightChoice(P ′) (which im-
plement the search heuristic). As the branches correspond to a disjunction of
P ′, the recursive counts add up to the total number of solutions.

The only addition that is necessary to turn DFS into an and/or search is
line 5: If the problem can be decomposed into P ′1 and P ′2 (we simplify by assuming
only binary decomposition), these partial problems in conjunction are equivalent
to P ′. Hence, we multiply the results of the recursive calls.

In contrast to investigating decomposability only on the initial CSP for a
static variable selection, Algorithm 1 follows a dynamic approach: the check for
decomposability is interleaved with propagation and normal search. As search
progresses, more and more variables are assigned to values, and more and more
constraints are detected to be entailed. We shall see that this greatly increases the

Fig. 2. And/or search tree.
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Algorithm 1 Counting by Decomposition During Search
1: function DDS(P )
2: P ′ ← Propagate(P )
3: if IsFailed(P ′) return 0
4: if IsSolved(P ′) return 1
5: if Decompose(P ′)= (P ′

1, P ′

2) return DDS(P ′

1) · DDS(P ′

2) ⊲ decomposition
6: return DDS(LeftChoice(P ′)) + DDS(RightChoice(P ′)) ⊲ choice
7: end function

potential for decomposition in Sec. 4. Furthermore, decomposition is completely
independent of the implementation of LeftChoice and RightChoice, so any
search heuristic can be used.

Short-circuit. As a straight-forward optimization, we can employ short-circuit
reasoning in line 5. If DDS(P ′1) returns no solutions, we do not have to compute
DDS(P ′2) at all. Note the potential pitfall here: There are situations where DFS
detects failure easily, but DDS has to search a huge partial problem P ′1 before
detecting failure in P ′2. We come back to this in Sec. 4.

Enumerating solutions. Extending DDS to enumeration of solutions is straight-
forward: We just have to return an empty list in case of failure (line 3), a single-
ton list with a solution when we find one (line 4), and interpret addition as list
concatenation and multiplication as combination of partial solutions. Instead of
enumeration, we can also build up a tree-shaped compact representation of the
solution space (as in Fig. 2 and later in Fig. 6c).

In the rest of this section, we show how to compute Decompose efficiently.

3.3 Computing the decomposition

We will now define formally when a CSP can be decomposed, and give a sufficient
algorithmic characterization that leads to an efficient implementation.

Restriction and independence. The restriction of a function f : Y → Z to
a set X ⊆ Y is defined as f|X : X → Z, x 7→ f(x).

We define the restriction of a CSP P = (X ,D, C) to a set of variables X ′ ⊆ X
by P|X ′ = (X ′,D|X ′, C|X ′), where C|X ′ = {c ∈ C | vars(c) ⊆ X ′}.

A non-empty proper subset X̂ ⊂ X is independent in a CSP P = (X ,D, C),
iff sol(P ) = ∅ or sol(P )|X̂ = sol(P|X̂ ). For some X̂ independent in P , we say that
P|X̂ is a partial problem of P . We can decompose P if it has a partial problem.

The key to an efficient implementation of Decompose is to have an algorith-
mic interpretation of what it means that a CSP can be decomposed into partial
problems. We now show that connected components in the constraint graph of
a CSP represent independent partial problems.

A graph is connected iff there exists a path between all nodes. A connected
component of a constraint graph GP is a maximal connected subgraph.

Proposition. Consider a CSP P with constraint graph GP = (X , E). If X̂ ⊂ X
is a connected component in GP , then P|X̂ is a partial problem of P . Proof:

There exists no hyperedge between any node x ∈ X̂ and any node y /∈ X̂, as
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connected components are maximal. This means that there is no constraint be-
tween such x and y in P . We have to distinguish two cases: If P is unsatisfiable,
X̂ is trivially independent (by definition of independence). Otherwise, take an
arbitrary solution s ∈ sol(P ), and an arbitrary solution s′ ∈ sol(P|X̂ ). Merging

s′ into s yields s′′ = (x 7→ s′(x) for x ∈ X̂ , x 7→ s(x) otherwise). This s′′ is
again a solution of P , as all constraints on X \ X̂ are still satisfied, and all
constraints on X̂ are satisfied, too. As we picked s and s′ arbitrarily, we get
sol(P )|X̂ = sol(P|X ).

This result is not new [3,11], but we repeat it to illustrate the central algo-
rithmic idea. Connected components can be computed in linear time in the size
of the graph, and incremental algorithms are available. We can thus implement
Decompose as a simple connectedness algorithm on the constraint graph.

Finding more than one non-empty connected component is a sufficient con-
dition for finding partial problems, but not a necessary one. As an example,
consider the CSP that contains the trivial constraint allowing all combinations
of values for x and y. Then x and y may still be independent, but the constraint
graph shows a hyperedge connecting the two variables, so that x and y will al-
ways end up in the same connected component. In the following section, we will
see how propagation-based solvers can deal with this.

4 How DDS Interacts With Propagation and Search

The previous section showed how DDS can be integrated into a propagation-
based solver. But what are the consequences, how is decomposition affected by
propagation and search, and how can it benefit from the search heuristic?

4.1 Constraint graph dynamics

Decomposition examines the constraint graph during search. This is vital as
propagation and search modify the constraint graph dynamically – they narrow
the domains of the problem’s variables and remove some entailed constraints.
The result is a sparser constraint graph with more potential for decomposition:

Assignment. Clearly, an assigned variable (|D(x)| = 1) is independent of all
other variables of the CSP. This implies that edges to assigned variables can
be removed from the constraint graph. Variables can get assigned during search
and by propagation, so both mechanisms result in sparser constraint graphs.

Entailment. If a constraint c is entailed in a CSP P = (X ,D, C), it will not
contribute to propagation any more. Formally, we have for P ′ = (X ,D, C \ {c})
that sol(P ′) = sol(P ). It is also obvious that the constraint graph for P ′ is sparser
than the one for P , it contains one edge less. It is thus vital to our approach
to detect entailment of constraints as early as possible, and to remove entailed
constraints from C. Clearly, full entailment detection is coNP-complete. Most
CP systems however implement a weak form of entailment detection in order to
remove propagators early, which our approach automatically benefits from.
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4.2 Search heuristics

The search heuristic, encoded by LeftChoice and RightChoice, is extremely
important for the efficiency of the search. In particular, dynamic heuristics, na-
tively supported by DDS, are known to be largely superior to static ones.

A common class of search heuristics for solving CSPs are variable-value
heuristics. Such a binary heuristic selects a variable x and a value v from this
variable’s domain. The selection may depend on the current sub-problem. For a
variable-value heuristic, LeftChoice(P ) returns P with the added constraint
x⋄v, and RightChoice(P ) adds ¬(x⋄v) to P , where ⋄ is some binary relation.

Variable selection. The variable selection strategy of such a heuristic is crucial
for the size of the search tree. A common method for variable selection is ‘first-
fail’, which selects by minimal domain size. Other strategies use the degree in the
constraint graph or the minimal/maximal/median value in the domain. Static
variable orderings are in many cases inferior to these dynamic strategies.

Heuristics that maximize decomposition. In order to maximize the number
of decompositions during search, the heuristic can be guided by the constraint
graph. Such a heuristic may compute e.g. cut-points, bridges, or more powerful
(minimal) cut-sets/separators. Our framework is well prepared to accommodate
such complex strategies, in particular because our method already builds on
access to the constraint graph.

Order of exploration of partial problems. The exploration order of and -
nodes, the partial problems, is of high importance. After detecting inconsistency
in one partial problem, exploration of the other ones is needless. Because of the
duality of and - and or -nodes, we can reuse the or -heuristic for decomposition.
Assuming that we already have a good variable selection heuristic, we use this
heuristic to guide the partial problem ordering: choose the partial problem that
contains the selected variable first. That way, a good first-fail heuristic will lead
to failure in the first explored partial problem. This mitigates the effect that
failure may be detected late using DDS.

5 Global Constraints

One of the key features of modern constraint solvers is the use of global con-
straints to strengthen propagation. Therefore, a search algorithm has to support
global constraints in order to be practically useful in such systems.

For an n-ary (global) constraint, the constraint graph contains a hyperedge
that connects all n variable nodes. Considering the example from Fig. 1 again,
we introduce one all-different instead of all binary 6=-constraint. The domain-
consistent propagator for this constraint is clearly at a fixpoint. Furthermore, the
variable sets {A, B} and {C, D} are independent concerning all-different. How-
ever, the constraint graph contains just one hyperedge between all four variables.
Thus, in the current set-up, the all-different constraint prevents decomposition.

In the following, we will show how to deal with this problem in general,
and how we can efficiently compute decompositions for three standard global
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constraints. We discuss global constraints for linear (in-)equations and why such
equations hinder decomposition. Finally, we generalize the examples to derive a
general rule that tells if a global constraint is decomposable or not.

Decomposing global constraints. In general, most global constraints can
be thought of as efficient implementations for a conjunction of smaller con-
straints [6]. This is usually also called the decomposition of the global constraint
– we will call it constraint decomposition to distinguish it from the constraint
graph decomposition we are interested in.

The constraint decomposition of a global constraint gives us the tool for com-
puting the constraint graph decomposition in the presence of global constraints.
Instead of the original graph, we use the graph containing the constraint decom-
position (or an approximation) to compute connected components.

For the introductory example of the all-different constraint, this would mean
that we consider exactly the connected components shown in Fig. 2, yielding the
same decomposition.

5.1 All-different

Régin’s propagator for the all-different constraint [20] employs a bipartite graph,
the variable-value graph. It connects each variable node with the value nodes
corresponding to the elements of the current variable domain. We can observe
that all-different can be decomposed exactly if the variable-value graph contains
more than one connected component (see Fig. 3 a). As connected components
of this graph have to be computed anyway during the propagation, we can get
the constraint decomposition without any additional overhead. This technique
generalizes to the global cardinality constraint.

5.2 Slide

This constraint, introduced by Bessiere et al. [4], slides a k-ary constraint c over
a sequence of variables, i.e. it holds if c(xi, . . . , xi + k − 1) holds for all 1 ≤ i ≤
n − k + 1. The constraint can be split into two at variable xd if the individual
constraints involving xd are entailed (see Fig. 3 b). Entailment happens at the
latest when all variables between xd−k+1 and xd+k−1 are assigned. Depending
on how soon the individual c are entailed, we can decompose even earlier.

5.3 Regular

Pesant’s regular language membership constraint [17] states that the values taken
by a sequence of variables x1, . . . , xn belong to a regular language L. The prop-
agation algorithm works on the so-called layered graph, which represents an
unfolding of a finite automaton accepting L (see Fig. 3 c).

If now, at some point during propagation, one layer is left with a single
state (see Fig. 3 c), the graph can be split into two halves, making the singleton
state a new final state (for the left half) and start state (for the right half). They
correspond to regular expressions Rl and Rr, covering the two substrings left and
right of that layer, such that the language generated by RlRr is a sublanguage
of L that contains exactly those strings still licensed by the variable domains.
Note, the constraint decomposition is possible even without variable assignment.
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a) b) c)

Fig. 3. (a) Variable-value graph of an All-different constraint for the CSP in Fig. 1,
(b) Decomposing the slide constraint, (c) Layered graph for a regular constraint.

5.4 Linear (in-)equations

Linear (in-)equations are ubiquitous in real-world constraint problems. Unfortu-
nately, it turns out that they hinder decomposition. Consider the simple linear
equation

∑n

i=1 xi = c. It can be decomposed into ternary equations x1+x2 = y1,
x2+y1 = y2, . . . , xn+yn−1 = c. The corresponding constraint graph decomposes
if one of the yi is assigned. However, this only happens when all the xj to the
right or all the xj to the left of yi are assigned. Thus, constraint subgraphs with
linear constraints will stay connected until the variables are assigned.

5.5 Decomposability of global constraints

Revisiting the four examples, a general rule for the decomposability of global
constraints can be derived. The all-different, slide and regular constraints have
rather different propagation algorithms. Nevertheless, the constraints share a
common feature: there exists a decomposition without additional variables. This
is not the case for linear (in-)equations and related constraints. Here, interme-
diate variables are necessary that hinder the constraint decomposition.

Decomposability of global constraints is an active area of research [6,4,5].
It makes for interesting future work to analyze constraint decompositions with
respect to their impact on DDS.

6 Implementation

Our implementation of DDS extends Gecode, a C++ constraint programming li-
brary. In this section, we give an overview of relevant technical details of Gecode,
and discuss the four main additions to Gecode that enable DDS: access to the
constraint graph, decomposing global constraints, integrating Decompose into
the search heuristic, and specialized search engines. The additions to Gecode
comprise only 2500 lines (5%) of C++-code and enable the use of DDS in any
CSP modeled in Gecode. The source code of the prototype implementation is
available from the authors upon request.

Gecode. The Gecode library [12] is an open source constraint solver imple-
mented in C++. It lends itself to a prototype implementation of DDS because
of four facts: (1) Full source code enables changes to the available propagators.
(2) The reflection capabilities allow access to the constraint graph. (3) Search
is based on recomputation and copying, which significantly eases the imple-
mentation of specialized branchings and search engines. (4) It provides good
performance, so that benchmarks give meaningful results.
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Constraint graph. In most CP systems, the constraint graph is implicit in the
data structures for variables and propagators. Gecode, e.g., maintains a list of
propagators, and each propagator has access to the variables it depends on.

For DDS, a more explicit representation is needed that supports the com-
putation of connected components. We can thus either maintain an additional,
explicit constraint graph during propagation and search, or extract the graph
from the implicit information each time we need it. For the prototype implemen-
tation, we chose the latter approach. We make use of Gecode’s reflection API,
which allows to iterate over all propagators and their variables. Through reflec-
tion, we construct a graph using data structures from the boost graph library [8],
which also provides the algorithm that computes connected components.

Global constraints. There are two possible implementation strategies for de-
composing global constraints as discussed in Sec. 5. First, a propagator detects
its decomposability during propagation and replaces itself with several smaller
propagators. For the second strategy, the decomposition is only computed lazily,
when the constraint graph is accessed. We implemented the latter option.

Decomposing branchings. Once we have identified connected components
in the constraint graph, we have to create the partial problems that corre-
spond to these components. In Gecode, we exploit the duality of choice and
decomposition: both add branches to the search tree. The following observa-
tion leads to a simple and efficient implementation. If the heuristic is restricted
such that it only selects variables inside one connected component, also propa-
gation will only occur for variables of that component: For X̂ independent in P ,
propagate(P )|X̂ = propagate(P|X̂ ).

For our Gecode implementation, Decompose is thus realized as a branching.
A branching in Gecode usually implements LeftChoice/RightChoice. For
DDS, we extend it to also implement Decompose: If decomposition is possible,
the branching limits further search to the variables in one connected component
per branch. Otherwise, it just creates the usual choices according to the heuristic.

Branchings in Gecode are fully programmable. They have to support two op-
erations3: description and commit. description returns an abstract descrip-
tion of the possible branches while commit executes the branching according to
a given description and alternative number.

A decomposing branching in Gecode is a wrapper around a standard variable-
value branching. The actual work is done by description: it requests the con-
straint graph and performs the connected component analysis. If decomposition
is possible, a special description is returned, representing the independent subsets
X̂i ⊂ X . Otherwise, description is delegated to the embedded variable-value
branching. Note that Gecode supports n-ary branchings, so decompositions do
not have to be binary (as presented so far).

When commit is invoked with a variable-value description, the call is again
delegated to the embedded branching. For a decomposition description, the

3 In fact, branchings in Gecode have a slightly more complicated interface, which we
deviate from to simplify presentation.
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branching’s list of variables is updated to X̂i for branch i, those still active
in the selected component.

Decomposition search engines.

Fig. 4. Gist

As decomposition is performed by the branching, the
search engines have to be specialized accordingly. We de-
veloped four search engines for DDS. A counting search
engine computes the number of solutions of a given prob-
lem. A general-purpose search engine allows to incremen-
tally search the whole tree and access all the partial solu-
tions. Based on that we provide a search engine that enu-
merates all full solutions. A graphical search engine based
on Gecode’s Gist (graphical interactive search tool) dis-
plays the search tree with special decomposition nodes,
and allows to get an overview of where and how a par-
ticular problem can be decomposed. Figure 4 shows a
screen shot of a partial search using DDS. Circular nodes
with inner squares represent decompositions. All search engines accept cut-off
parameters for the number of (full, not partial!) solutions to be explored.

7 Applications and Empirical Results

To illustrate possible use cases of DDS we applied it to two counting problems
with global constraints, graph coloring and optimal protein structure prediction.
Both applications show tremendous reductions in runtime and search tree size.

The applications were realized using our DDS implementation in Gecode.
Only the search strategy was changed (DFS to DDS) – modeling, variable and
value selection were kept the same for an appropriate comparison of the results.
We chose maximal degree with minimal domain size as tie breaker as dynamic
variable selection, which enforces decomposition and works well for DFS, too.

7.1 Graph coloring

Graph coloring is an important and hard problem with applications in schedul-
ing, assignment of radio frequencies, and computer optimization. A proper color-
ing assigns different colors to adjacent nodes. We want the chromatic polynomial
for the chromatic number, i.e. the number of graph colorings with minimal colors.

The constraint model. For a given undirected graph g and a number of colors
c we introduce one variable per node with the initial domains 0..(c−1). For each
maximal clique of size > 2, we post an all-different constraint on the correspond-
ing variables. For all remaining edges we add binary disequality constraints.

The test sets. We generated the two test sets GC-30 and GC-50 of graphs
with 30 and 50 nodes. For each size, random graphs were obtained by inserting
an edge of the complete graph with a fixed uniform edge probability P e. This
was done using the Erdős-Rényi random graph generator GTgraph [13]. For each
edge probability P e from 16 to 40 percent, 2000 graphs were generated and their



12

DFS/DDS: Test set 16 % 18 % 20 % 22 % 24 % 28 % 32 % 36 % 40 %

Rel. runtime:
GC-30 411.2 197.7 75.74 34.6 23.1 11.9 3.85 2.74 2.14
GC-50 242.7 151.8 34.23 16.5 18.2 3.4 2.71 – –

Search tree size:
GC-30 680.3 344.4 142.0 74.48 62.27 33.96 10.90 6.86 4.97
GC-50 646.1 383.8 94.28 47.26 41.69 11.6 9.28 – –

Table 1. Average ratios of DFS vs. DDS for various edge probabilities

a) b)

Fig. 5. (a) Avg. speedup decrease from 400 to 2 by graph density, (b) Histogram of
logarithmic speedup for P

e = 28 and 30 nodes (the dashed line marks equal runtime).

colorings counted via DFS and DDS. To handle highly degenerated problems as
well, we stopped after 1 million solutions.

Results. For the test sets, Tab. 1 compares the time consumption and search
tree size by average ratios of DFS and DDS (DFS

DDS
). A figure of 100 thus means

that DDS is 100 times faster than DFS, or that the DFS search tree has 100 times
as many nodes as the one for DDS. A dash means that most of the problems
were not solved within a given time-out.

The presented runtime ratios show the high speedup for graphs with edge
probabilities P e ≤ 40%. The distribution of speedup is exemplified in Fig. 5b.
The speedup corresponds to an even larger reduction of the search tree for
DDS, which was only increased for 0.5% of all problems. Furthermore, sparse
graphs yield a much higher runtime improvement than dense graphs, visualized
by Fig. 5a. The number of fails and propagations show no significant effect of
DDS in contrast to runtime or search tree size.

Still, the search tree reduction is not completely reflected in runtime speedup,
which illustrates the computational overhead of DDS in the current prototypic
implementation. Anyway, our data shows that DDS is well suited to improve so-
lution counting even for dense graphs with P e about 40%. We expect even higher
speedups and search-tree reductions if the solutions are counted completely, i.e.
without the current upper bound of 1 million. Table 1 suggests that the speedup
decreases with increasing number of nodes to color in the graph. With increasing
number of nodes, the graph as well as the constraint graph grow quadratically.
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Fig. 6. (a) Contact energy function (b) Example HP-structure with energy -2 (H-
monomer: black, P-monomer: white, structure back bone: grey, HH-contact: dotted)
(c) Compression of the solution space from 9 complete down to 3 by 3 partial structures.

The speedup is significantly lower than the reduction of the search tree. In
part this can be ascribed to our implementation that rebuilds the constraint
graph in each search step. A system that provides cheaper constraint graph
access, e.g. by maintaining it incrementally, is expected to perform much better.

7.2 Optimal protein structure prediction

The prediction of optimal (minimal energy) structures of simplified lattice pro-
teins is a hard (NP-complete) problem in bioinformatics. Here we focus on the
HP-model introduced in [14]. In this model, a protein chain is reduced to a se-
quence of monomers of equal size, whereby the 20 aminoacids are grouped into
hydrophobic (H) or polar (P). A structure is a self-avoiding walk of the underly-
ing lattice (e.g. square or cubic). A contact energy function is used to determine
the energy of a structure. The energy table and an example is given in Fig. 6.
The problem is to predict minimal energy structures for a given HP-sequence.

The number and quality of optimal structures has applications in the study
of energy landscape properties, protein evolution and kinetics [22].

The constraint model. In [2], the problem was successfully modeled as CSP
and named Constraint-based Protein Structure Prediction (CPSP). Here, a vari-
able is introduced for each sequence position and with lattice points as do-
mains4. The self-avoiding walk is modeled by a sequence of binary neighbor-
ing constraints (ensuring the connectivity of successive monomers) and a global
all-different constraint for self-avoidingness. Supporting decomposition of the
all-different propagator, see Sec. 5, is therefore essential for profiting from DDS.

CPSP uses a database of pre-calculated point sets, called H-cores, that rep-
resent possible optimal distributions of H-monomers. By that, the optimization
problem is reduced to a satisfaction problem for a given H-core, if H-variables
are restricted to these positions. For optimal H-cores, the solutions of the CSP
are optimal structures. Thus, for counting all optimal structures, one iterates
through the optimal cores.

The test sets. We generated two test sets, PS-48 and PS-64, with uniformly
distributed random HP-sequences of length 48 and 64. For the generation we used
the free available CPSP implementation [9]. With only minimal modifications
(new branching) we use the existing CSP model with DDS.

4 In practice, lattice positions are indexed by integers such that standard constraint
solvers for finite domains over integers are applicable.
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DFS / DDS

runtime search tree size fails propagations

PS-48 2.98 11.30 1.40 3.27
PS-64 4.23 25.33 1.76 5.43

Table 2. Average ratios for CPSP using DFS vs. DDS (ST = search tree)

PS-48 contains 6350 HP-sequences and for each up to 1 million optimal struc-
tures in the cubic lattice were predicted. For the 2630 HP-sequences in PS-64
up to 2 million structures have been predicted in the cubic lattice, due to the
increasing degeneracy in sequence length.

Results. The average ratio results are given in Tab. 2. There, the enormous
search tree reduction with an average factor of 11 and 25 respectively is shown.
The reduction using DDS compared to DFS leads to much less propagations (3-
to 5-fold). This and the slightly less fails result in a runtime speedup of 3-/4-fold
using the same variable selection heuristics for both search strategies. Here, the
immense possibilities of DDS even without advanced constraint-graph specific
heuristics are demonstrated. This also shows the rising advantage of DDS over
DFS for increasing problem sizes (with higher solution numbers).

8 Discussion
Our paper introduces decomposition during search (DDS), an integration of
and/or search with propagation-based constraint solvers. DDS dynamically de-
composes CSPs, avoiding much of the redundant work of standard tree search
when exploring huge search spaces, e.g. of #P -hard counting problems.

Building on folklore knowledge and previous research, we discuss the interac-
tion of DDS with such vital features as global constraints and dynamic variable
ordering. The techniques presented here have been implemented for Gecode.

Our empirical evaluation on graph coloring and protein structure prediction
shows the huge potential of DDS in terms of search tree size reduction and
already high true runtime speedup. The speedup proves that DDS can be imple-
mented competitively, and with a reasonable overhead. We expect even higher
speedups by improving the constraint graph representation and its incremental
maintenance, which is a current area of development. However, one experience
from our experiments is that it is highly problem-specific whether the constraint
graph allows for decomposition. We partly explain this by pointing out that
some constraints (e.g. linear (in-)equations) inherently hinder decomposition.

We envision promising future research in the following directions. First, pro-
viding efficient access to the constraint graph. Second, the development of specif-
ically tailored heuristics for DDS focusing on dynamic variable selection or do-
main splitting. Such heuristics should employ information about the constraint
graph, to decompose the problem as often as possible and in a well-balanced
way. Decomposition-directed heuristics might however counteract problem spe-
cific heuristics. Balancing such heuristics is a further research direction.

Finally, solving optimization problems using an and/or branch-and-bound
(BAB) search [16] seems an obvious extension. However, our first experiments
using a prototypical DDS extension of BAB show much smaller benefits than
for counting (similar to the results in [16]).
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