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Abstract. Here the authors overview an ongoing effort to extend satisfiability-
based methods for haplotype inference by pure parsimony (HIPP). This genome
analysis task, first formulated as a boolean satisfiability probelm by Lynce and
Marques-Silva [1], has been performed successfully by modern SAT-Solvers.
But, it is not as widely used as some better-publicized statistical tools, such as
PHASE [2]. This paper presents the authors’ assessment of the current situa-
tion, and a preliminary statement of intention concerning their aims in this area.
Namely, the situation suggests three categories of improvements for making HIPP
more widely-used within the biological community: 1) the ability to handle larger
problems; 2) more detailed empirical understanding of the accuracy of the “pure
parsimony” criterion; and 3) additional criteria and methods for improving on
this level of accuracy.

1 Background

As detailed in a recent overview paper [3], the haplotype inference problem is defined
over a population of individuals represented by their respective genotypes. Each geno-
type can be viewed as a sequence of nucleotide pairs, where the two values of each pair
are split across the individual’s two chromosomes as inherited from their two parents.
Much of the genetic variation between individuals consists of point mutations at known
sites within this sequence, known as single nucleotide polymorphisms (SNP’s). Thus, a
genotype can represented (with loss of information) as a sequence of nucleotide pairs
at successive SNP sites.

In particular, at each such site, an individual might have two copies of the “mi-
nor allele”– in this case, the presumably mutated or at least rarer of the two possible
nucleotide values. At this site the individual is then homozygous (major). Similarly, a
SNP site is realized on each chromosome by the nucleotide value that is most com-
mon for the species then the site is homozygous (minor) for this individual. The third
possibility is that one of the individual’s chromosomes has the major allele at a given
site, while the other chromosome has the minor allele at that site–then the genotype is
heterozygous at the site in question. Notationally, the first case can be represented by
the character ‘0’, the second by ‘1’, and the third, heterozygous case, by ‘2’. So, the
sequence “0102” indicates an individual with two minor alleles at both the first and the
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third SNP sites measured by a particular study, and two major alleles at the second site.
At the fourth site, we know that one chromosome exhibits the major allele and the other
exhibits the minor. Thus, an individual’s genotype is well-defined by the sequences of
its two constituent chromosomes; these two individually inherited sequences are called
haplotypes. If we overload ‘0’ and ‘1’ to indicate a single minor or single major allele
in a particular haplotype, then we can denote that the genotype “0102” arises from the
two haplotypes “0100” and “0101”.

Conversely, though, a genotype with more than one heterozygous site can be ex-
plained by multiple pairs of haplotypes, as the major and minor alleles at all het-
erozygous sites in the genotype can be permuted across corresponding sites in the
two haplotypes. More concretely, the genotype “02122” could be realized the pairs
“00100”/“01111”, “00101”/“01110”, “00110”/“01101”, or “01100”/“00111”. (Natu-
rally, the term “pair” is used colloquially here, and does not signify any sense of order-
ing within the haplotype sets of size two that arise in this domain.) Accordingly, there
are 2k−1 candidate haplotype pairs for explaining a genotype with k heterozygous sites.

In practice, this distinction is made relevant by the lack of any practical experimental
method to measure an individual’s two haplotypes instead of its genotype; in other
words, the machinery can identify sites at which the two haplotypes have opposing
values, but cannot tell which values are grouped together on which chromosome. The
goal of haplotype inference is to guess the most likely haplotypes that generated a given
set of genotypes.

2 Underlying Biological Principles

How can one answer to the haplotype inference problem be preferred to any other?
Because the ultimate goal is to accurately predict haplotypes appearing in a particular
subject (i.e. human) population, haplotype inference frameworks must apply standards
that seek to model the types of phenomena that actually drove the true state of affairs in
the evolution of the subject species’ genome. In other words, human haplotypes are not
drawn uniformly from the space of all possible pairs that could explain human geno-
types. Rather, under the coalescent model of evolution there should be only a small
number human haplotypes that were recombined and mutated to produce any of the
genotypes within a given haplotype inference problem instance. Thus, early researchers
used greedy methods to try to minimize the set of answers to a haplotype inference
problem [4], while later systems integrated models based on “perfect phylogeny” [5] or
other hierarchical organizations of answer haplotypes [6]. The most widely-used tech-
niques at this point in time integrate empirical statistical measures of likely haplotypes
[7–9, 2, 10], by analyzing the population in question, or consulting outside sources [11].
Such approaches may not require that the inferred set of answer haplotypes can be ar-
ranged into a particular evolutionary structure, but they all require the haplotype set to
be maximally likely according to a particular statistical model that has been fit to the
problem and/or outside frequency data.

On the other hand, the “pure parsimony” methodology seeks to capture such phe-
nomena implicitly by asking directly for the smallest possible set of haplotypes that as
a whole can explain a given population of genotypes [12]. Methods that are based on
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this criterion thus perform “HIPP”, indicating haplotype inference by pure parsimony.
This pure parsimony principle has been achieved optimally and efficiently by employ-
ing a variety of satisfiability-based techniques on small to moderately-sized data sets of
about 200 sites and 100 individuals [1, 13–15]. However, aside from a preliminary and
limited evaluation of pure parsimony, which did not include such satisfiability-based
techniques [16], the overall accuracy and general feasibility HIPP does not seem to be
well-understood within the biological community.

That is, satisfiability-based HIPP methods must demonstrate two forms of feasibil-
ity in order to achieve wider adoption within the biological community: the empirical
accuracy of the pure parsimony principle itself, and the efficiency and scalability of
SAT methods for achieving this parsimony criterion. While SAT-based techniques can
achieve optimal parsimony, on reasonably large data sets, they still cannot be applied to
the massive collections characteristic of more popular biological applications that may
require on the order of half a million sites. Addressing the issue of scalability will not
only enable the assessment of model accuracy and solver efficiency, but can addition-
ally lead to more accurate results. This is because multiple minimum haplotype sets can
explain the same population of genotypes [3], but some of them can be safely consid-
ered more likely a priori. For instance, solution sets whose members are more similar
to each other are more realistic with respect to evolutionary theory [2, 10], and certainly
one must certainly be preferred a posteriori with respect to the truth–in the real world
there was a single haplotype set that produced a set of genotypes (and this set may or
not be minimum.) So while the initial goal is evaluation of the HIPP principle and HIPP
solvers, and the prerequisite goal is improved solver scalability, in pursuing these we
would like to synergistically attain the overarching goal of making the most accurate
predictions possible, as opposed to merely minimal ones.

We propose to do this by making finer-grained use of biological principles in de-
signing SAT-based methodologies for HIPP. One prominent example of such phenom-
ena would be “linkage disequilibrium”, or correlation between sites within a sequence
[17]. The sequential and mostly non-random nature of genotypes and haplotypes are
at core of many of the optimizations and models that underly statistical alternatives to
HIPP; finding a way to exploit them within a discrete reasoning framework would make
HIPP competitive in efficiency and accuracy. Three proposals for doing so are outlined
in the next section.

3 Proposals for Extending the Satisfiability-Based HIPP
Framework

In this section we propose three general types of improvements to the HIPP framework
that can make it competitive to the current methods of choice within the biological
community.

– Exploiting sequential structure to improve scalability. The best-performing (and
most widely-used) statistical systems [7, 8, 2] for haplotype inference utilize ex-
plicit or implicit variants of the “partition ligation” scheme of Niu et al [18]. The
basic idea is to escape the combinatorial explosion of considering the entire space
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of possible haplotypes for a given sequence, and instead break the sequence into
blocks. Each such block is small enough to be solved efficiently and to high ac-
curacy; they are then recombined heuristically through a polynomial-time merging
scheme. With the merging scheme comes a loss of optimality; in the case of HIPP
we may not get the smallest possible explaining haplotype set by means of this
scheme. But, the insight of the partition ligation scheme is that evolution does not
create haplotypes uniformly at random over all possible explanations for the human
genotype, and in practice the loss in optimality has proved negligible in comparison
to the gains in accuracy for statistical methods [18, 7, 2]. For beyond being biolog-
ically justifiable, block partitioning can actually produce more accurate overall re-
sults because each block can be solved to higher standards of likelihood using more
computationally expensive methods. For instance, a statistical approach based on
MCMC sampling can choose to perform vastly more iterations on a more com-
plex model within the confines of a small block, while realistically hoping to retain
much of the benefit during the merging process [2]. Applying this framework to
SAT-based approaches can provide similar gains, whether using parsimony alone
or integrating statistical information in solving blocks.

– Assess the accuracy of HIPP on large-scale data. When HIPP is able to han-
dle larger data sets, it will be possible to directly compare its accuracy with other,
more-popular approaches. This will allow an assessment of the model’s strengths
and weaknesses and inform any attempts to improve this accuracy. At this point,
SAT methods have been highly successful at solving HIPP, but it remains to be
seen whether the resulting answers are themselves successful at modeling the hu-
man genome–as mentioned previously here and elsewhere [3], there can be many
minimum sets that all qualify as HIPP solutions, while some of these are much
more empirically likely than others. Characterizing which types of these solutions
usually turn out to be more accurate will go a long way to improving the parsimony
model’s fit to real populations.

– Exploiting linkage disequilibrium to improve accuracy. In the same spirit as
the first two points, there are important correlations between various regions of the
vast majority of a species’ haplotypes, due to the recombination and mutation pro-
cesses that drive evolution. To compete with statistically-oriented tools, HIPP can
be extended to encompass the same sort of empirical information concerning such
correlations [19, 20]. This may entail a weighted SAT or a MAXSAT formulation
that favors solutions that adhere to stronger correlations that have been observed
from the same sources of data as used by the competitor techniques.

4 Conclusion

The authors have begun to implement block decomposition within the SAT-based HIPP
framework, but this description of research is decidedly preliminary and strictly for
expository purposes. Once the system is able to handle large problems, the next step
will be to study its accuracy, especially in terms of adding additional solution criteria to
pure parsimony. The concluding step will be to use information derive from individual
problem-instance and/or reference data to actually achieve such criteria. It would be a
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great opportunity to be able to discuss such plans with others who are working on this
problem and related areas!
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