
Friedrich-Schiller-Universität Jena
Fakultät für Mathematik und Informatik

Pairwise Comparison of RNA Secondary
Structures via Exact Pattern Matches

Diplomarbeit
zur Erlangung des akademischen Grades

Diplom-Bioinformatiker

eingereicht von Steffen Heyne
geboren am 21. März 1980 in Dresden

Gutachter: Prof. Dr. Rolf Backofen
Prof. Dr. Stefan Schuster

Betreuer: Dr. Sven Siebert
Dr. Sebastian Will
Prof. Dr. Rolf Backofen

Jena, 07. November 2007

Zusammenfassung
Ribonukleinsäuren (RNAs) sind in lebenden Organismen an vielen wichtigen zellulären Pro-
zessen beteiligt. Lange Zeit waren für RNAs nur grundlegende Zellfunktionen wie die der
mRNAs zur Informationsübertragung von DNA zu Proteinen bekannt. Die Entdeckung von
Ribozymen sowie im besonderen Forschungen aus jüngster Zeit brachten Funktionen für
RNAs ans Tageslicht, die sonst nur mit Proteinen assoziiert wurden. So können zum Beispiel
RNAs die nicht für Proteine codieren, die Aktivierung oder Unterdrückung von Genen sowie
das Niveau der Genexpression beeinflussen. Diese und eine vielzahl weiterer Entdeckungen
haben dafür gesorgt, dass RNAs sich wieder im Blickpunkt aktueller Forschung befinden.

Die Funktion eines RNA Moleküls wird bestimmt durch seine dreidimensionale Struktur.
Darüberhinaus sind spezifische Funktionen mit speziellen Teilstrukturen oder so genannten
Motiven innerhalb des RNA Moleküls verbunden. Beispiele für solche Motive sind SECIS
Elemente oder IRES Sequenzen. Das Charakteristische dieser Motive besteht in der Kombi-
nation von sequentiellen und strukturellen Merkmalen. Für die Identifizierung von neuen als
auch von bekannten Motiven sind deshalb Vergleichsmethoden für RNAs notwendig, die auf
Sequenz und Struktur basieren. Verschiedene methodische Ansätze existieren dafür, aber
viele von diesen arbeiten nicht auf der Basis von Motiven und behandeln identische Teil-
strukturen nicht als eine Einheit. Desweiteren sind diese Methoden oft nicht schnell genug
für große RNAs.

In der vorliegenden Diplomarbeit werden zwei Methoden für den paarweisen Vergleich von
RNA Sekundärstrukturen auf der Basis von exakten Teilstrukturen vorgestellt. Diese Teil-
strukturen werden ”Exact Pattern Matches“ genannt. Für den Vergleich werden dazu in
einem ersten Schritt eine Menge von sich überlappenden und kreuzenden Teilstrukturen der
beiden vorgegebenen genesteten RNA Sekundärstrukturen bestimmt. Dazu wird der An-
satz für gemeinsame Teilstrukturen von Siebert/Backofen genutzt. Die erste neu entwickelte
Methode bestimmt nun die größte globale Teilmenge von sich nicht kreuzenden und nicht
überlappenden Teilstrukturen von zwei gegebenen RNAs. Dieses Problem wird als Longest
Common Subsequence of Exact RNA Patterns bezeichnet und steht in Verbindung
zum bereits bekannten LAPCS Problem. Zur Lösung wird ein dynamischer Programmieral-
gorithmus entwickelt, welcher dieses Problem in O(n2m2) Zeit und O(nm) Speicherplatz löst.
Die zweite entwickelte Methode findet lokale Cluster von exakten Teilstrukturen. Ein Clus-
ter ist eine Anordnung von sich nicht kreuzenden und nicht überlappenden Teilstrukturen
mit einer zusätzlichen Distanzbedingung zwischen einzelnen Teilstrukturen des Clusters. Die
entwickelte ”Clustering Strategie“ für die Bestimmung von Clustern ist schnell und flexibel
für verschiedene analytische Probleme. Beide Methoden wurden mit zwei Hepatitis C Virus
IRES RNAs und zwei 16S ribosomalen RNAs getestet. Die Ergebnisse zeigen, dass beide
Methoden klare Ähnlichkeiten zwischen zwei RNA Sekundästrukturen auf schnelle Weise
finden können.

Abstract
In living organisms, ribonucleic acids (RNA) are involved in important cellular processes.
For a long time, only basal functions had been known for RNAs like messenger RNAs as the
information carrier between DNA and proteins. The discovery of ribozymes and especially
recent findings revealed functions for RNAs formerly assumed only for proteins. For example,
RNAs that do not code for proteins can influence processes like the activation and repression
of genes as well as the regulation of gene expression levels. These discoveries set RNAs in
the focus of current research.

The function of an RNA molecule is determined by its three-dimensional structure. Moreover,
specific functions are associated to specific substructures or motifs within an RNA molecule.
Examples are SECIS elements, iron-responsive elements and IRES sites. The key feature
for such motifs is usually a combination of sequential and structural properties. Sequence-
structure based comparison methods are necessary to identify already known motifs as well
as putative new motifs. Different approaches exist which deal with a sequence-structure
comparison of RNA molecules, but most of them are not motif-based and they do not treat
identical substructures as hole unit. Further, they are often not fast enough for large RNAs.

In this thesis we have developed two pairwise comparison methods on the basis of exact
matching substructures, called exact pattern matches. In a first step, a set of overlapping
and crossing substructures for two nested RNA secondary structures is found with the ap-
proach of pairwise common substructures from Siebert/Backofen. Our first method deals
with the task to identify the best global subset of Non-Crossing exact pattern matches for
two given RNAs. In relation to the LAPCS problem, we call this problem the Longest
Common Subsequence of Exact RNA Patterns. The developed dynamic program-
ming algorithm needs O(n2m2) time and O(nm) space. Our second approach detects (local)
clusters of exact pattern matches. A cluster is a Non-Crossing arrangement of exact pat-
tern matches with a distance constraint between the substructures included in a cluster.
The developed clustering strategy to find clusters is fast and flexible enough for different
analytical problems. We have tested both methods with two Hepatitis C virus RNAs and
two 16s ribosomal RNAs. The results show that both methods are able to identify significant
similarities between two RNA secondary structures in a fast way.

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Related Work . 7
1.3 Contribution . 9
1.4 Overview . 9

2 Preliminaries 11
2.1 Ribonucleic Acid (RNA) . 11
2.2 Motifs and Locality . 16
2.3 Pairwise Sequence-Structure Comparison . 18

2.3.1 Sequence-Based Comparison . 18
2.3.2 Sequence-Structure Comparison . 22

2.4 General Edit Distance of RNA Structures . 24
2.4.1 Edit Operations and Problem Description 24
2.4.2 A polynomial time algorithm for EDIT(Nested, Nested) 26

3 Exact Matchings in RNA Structures 28
3.1 Basic Definitions for Matchings . 28
3.2 Properties of the Set of Exact Pattern Matches 33
3.3 Structural Definitions on Exact Pattern Matches 35
3.4 A Fast Method to Detect Exact Pattern Matches 41

4 The Longest Common Subsequence of Exact RNA Patterns 46
4.1 Problem Description for LCS-ERP . 46
4.2 Dynamic Programming Algorithm for LCS-ERP 48
4.3 Correctness and Complexity . 52

5 A Local Clustering Strategy for Exact Pattern Matches 55
5.1 Local Clusters of Exact Pattern Matches . 55
5.2 Distance Methods . 56

5.2.1 DISTANCE-SEQUENCE . 56
5.2.2 DISTANCE-SEQUENCE-EQUAL . 57
5.2.3 DISTANCE-STRUCTURE-SHORTESTPATH 58

5.3 Clustering Strategies . 59
5.4 The Pairwise Pattern Clustering Algorithm 61

5.4.1 Preprocessing . 61
5.4.2 Clustering . 62
5.4.3 Complexity Analysis . 67

Contents 5

6 Results 69
6.1 Implementation of LCS-ERP and Clustering 69
6.2 Comparison to other Methods . 70
6.3 Application of LCS-ERP and Clustering . 71

6.3.1 Hepatitis C Virus IRES RNAs . 72
6.3.2 16S Ribosomal RNAs . 79
6.3.3 Summary for the Clustering Parameters 85

6.4 Discussion of Results . 85
6.4.1 The LCS-ERP Approach . 85
6.4.2 The Clustering Approach . 87

7 Discussion 89
7.1 Conclusion . 89
7.2 Open Problems and Future Work . 90

A Comparative Alignments 91
A.1 RNA align applied to two Hepatitis C Virus IRES RNAs 91
A.2 RNAforester applied to two Hepatitis C Virus IRES RNAs 92
A.3 RNA align applied to two 16S rRNAs . 94
A.4 RNAforester applied to two 16S rRNAs . 96

B Additional Results 98
B.1 Clustering applied to two 16S rRNA . 98
B.2 Clustering applied to two Hepatitis C virus IRES RNAs 101

C MCS algorithm 102
C.1 Pseudocode for the MCS-algorithm . 102
C.2 MCS-algorithm applied to two Hepatitis C virus IRES RNAs 104

Bibliography 105

List of Figures 109

List of Tables 111

List of Algorithms 112

Chapter 1

Introduction

1.1 Motivation

Ribonucleic acid (RNA) is an important biopolymer which attracts more and more re-
searchers’ attention since recent discoveries have revealed its wide range of functions in living
organisms. For a long time it has been assumed that only proteins can catalyze biochemical
reactions. With the discovery of the first ribozyme in 1980, a catalytic active RNA that
facilitates its own splicing, the view on RNA as a simple carrier between DNA and proteins
started to crumble. The “breakthrough“ in RNA research has then been proclaimed in 2002
by the readers of the Science journal for the numerous newly discovered functions for small
RNAs [Cou02].

The group of functional RNAs which are not translated into proteins are often summarized
as non-coding RNAs (ncRNA) and they are involved in different cellular processes. For
example, the translation machinery (ribosome) is built to a large extent of ribosomal RNAs
(rRNA). Transfer RNAs (tRNA) here realize the translation of codons into amino acids. In
the spliceosome RNAs guarantee the exact cleavage of introns.

Recent findings for RNAs add especially functions formerly assigned to proteins. Examples
are the influence of RNAs in the activation or repression of genes as well as their potential
to control the expression levels of genes. There are even indications that RNAs take part in
the cell development [Cou02].

Understanding this broad range of different functions, an analysis of the concrete three-
dimensional structure of RNA molecules is necessary. Comparison methods revealed that
specific functions are associated to specific motifs in the RNA structure. For example, the
presence of a SECIS element in the 3’ untranslated (UTR) mRNA region of mammalians fa-
cilitates the integration of the 21st amino acid selenocysteine in the peptide chain of proteins.
The key feature within the SECIS element is the combination of sequential and structural
properties that form the motif [KCN+03, WSPB97, FCDK01].

The task of bioinformatical approaches is to provide automatic methods for RNA molecules
which identify such motifs as well as identify putative new motifs. For example, see the
conserved structural pattern in figure 1.1. The indicated substructure could represent a
necessary part of the SECIS motif in this organism. Furthermore, one can think about
motifs which consist of several such substructures [SB07].

1.2 Related Work 7

Figure 1.1: Putative SECIS elements in non-coding regions of Methanococcus jan-
naschii according to [WSPB97]. The indicated substructure is found by the MCS
algorithm and represents an exact pattern match. Figure taken from [Sie06].

The computational problem is the high complexity of the structural interactions in an RNA
molecule. Nevertheless, most of the known motifs can be described reasonable on the basis of
nested secondary structures. This makes the motif-finding problem tractable for algorithms
and there exist several methods for the comparison of RNA molecules. However, most
methods treat at least a base-pair as a whole unit and common substructures are not part of
their ”alphabet“ [BMR95, JLMZ02]. This could be a drawback for the discovery of motifs
comprising different substructures. Moreover, existing methods are often not fast enough
for large RNAs. This motivates the development of motif-based and fast approaches for the
comparison of two RNA molecules.

In this thesis we deal with this task and develop two fast pairwise sequence-structure compar-
ison methods based on identical substructures between two given RNA secondary structures.
The first method aims on global similarities whereas the second method tries to find clusters
of common substructures.

1.2 Related Work

Several methods exist which address the problem of sequence-structure comparison for RNA
molecules. Based on the given structural information, one can distinguish three main ap-
proaches. If no structural information is given at all, Sankoff-like methods try to predict the
secondary structure along with a sequence alignment [San85]. Another group of methods try
to derive a secondary structure for a given RNA sequence from another RNA with its primary
and secondary structure [BMR95, LRV98]. A third group of methods compare two RNAs
given with their primary and secondary structures. This type of RNA sequence-structure
comparison best represents the approach treated in this thesis. Here one can further distin-
guish global and local methods.

Global Comparison Methods

Due to the complex base pairings, RNA structures are in general crossing structures. How-
ever, this class of RNA structures is algorithmically hardly tractable, because the comparison

1.2 Related Work 8

problem becomes easily NP-hard. In the case of pairwise comparison this is often denoted as
Problem(Type1,Type2), whereby the two types describe the complexity of the given RNA
secondary structures. A standard comparison approach is the computation of edit distances
between given RNAs, but even the problem Edit(Crossing, Plain) is MAX-SNP-hard
[JLMZ02]. The most tractable variant for the comparison of RNA structures is the reduc-
tion to nested RNA secondary structures. But the problem Edit(Nested,Nested) is still
NP-hard. With some restrictions to the scoring scheme methods exist, which achieve a pair-
wise comparison in polynomial time. In the field of global alignment-based methods, which
allow mismatches and gaps, the most prominent approach is given by Jiang et al. with
the general edit distance for RNA secondary structures [JLMZ02]. See section 2.4 for more
details and how this is achieved for the edit distance problem. Previous proposed structural
alignment methods have treated base pairs as a whole [BMR95].

With the focus on exact matchings, the LAPCS problem (longest arc-preserving common
subsequence) received much attention in literature in the last years [Eva99]. Here the prob-
lem is to find an arc-preserving subsequence from two given RNA structures. The problem
LAPCS(Nested,Nested) is NP-hard as well but there exist several approximation algo-
rithms [JLMZ00].

In contrast to these methods based on arc-annotated sequences a tree representation for a
nested secondary structure is possible as well. These representations are shown in figure 2.4
c) and 2.4 d). Tree-based methods are proposed by Zhang and Shasha [ZS89] for the edit
distance between two ordered labeled trees as well as by Jiang et al. for the alignment of
trees [JWZ95]. An improved version of the tree alignment method with the extension to
global and local forest alignments is given by Höchsmann et al. (RNAforester) [HTGK03].
Two general drawbacks of tree alignment methods are discussed in section 2.3.2.

Local Comparison Methods and Related Approaches

Local comparison approaches are suitable for the search of sequence-structure motifs in
RNA. A local alignment-based method is the local sequence-structure alignment algorithm
(LSSA), with a scoring scheme comparable to the general edit distance [BW04]. The ap-
proach from Gorodkin et al. identifies common stem loops in different RNA structures
[GSS01]. The RNAforester algorithm handles local alignment by finding the most similar
subtree [HTGK03].

The problem of exact sequence-structure patterns is handled by the maximum common
substructure algorithm from Siebert and Backofen [SB07]. This method identifies all exact
common substructures for two given nested RNA secondary structures. The main advantage
of this approach is that the algorithm needs only O(nm) time to compute all substructures
for two RNAs.

In general, protein structure alignment is related to RNA structure alignment if the three-
dimensional structure is known. These are for example methods as from Gerstein et al.
[GL98]. Further, protein contact maps are a structural representation which is related to
crossing secondary structures [LCWI01].

1.3 Contribution 9

1.3 Contribution

Like mentioned above, the maximum common substructure (MCS) algorithm from Siebert
and Backofen [SB07] aims at exact matching substructures between two RNA secondary
structures. Moreover, its fast O(nm) running time is at least two magnitudes faster than
most sequence-structure comparison methods.

With the motivated importance of sequence-structure motifs for the large variety of RNA
functions, the question arises if the found substructures from the MCS algorithm can be used
for a pairwise RNA comparison method. The fact that these substructures can represent
parts of sequence-structure motifs like for SECIS elements [WSPB97] (see figure 1.1) and
that each substructure comprises at least two nucleotides, encourages their usage for a motif-
based comparison [SB07]. In addition, the running times of related methods demand for
faster algorithms which still yield reasonable results.

In this thesis we present two approaches which are based solely on a precomputed set of
exact sequence-structure patterns from two given nested RNA secondary structures. We
call these exact substructures exact pattern matches (EPMs). Although the MCS algorithm is
able to compute all exact pattern matches, the matchings itself overlap and cross each other.
Algorithms are needed in order to find meaningful subsets of EPMs which represent pairwise
similarities between the considered RNAs. For this goal we have developed a suitable Non-
Crossing notion for exact pattern matches.

In relation to the LAPCS problem, our first method identifies the best global subset of exact
pattern matches for two RNAs. We call this problem the Longest Common Subsequence
of Exact RNA Patterns (LCS-ERP) and propose an O(n2m2) time and O(nm) space
dynamic programming algorithm to solve it.

The second approach tries to identify clusters of EPMs. A cluster is defined as an arrange-
ment of exact pattern matches with a distance constraint, i.e. the distance between two
EPMs is below a given threshold value. This opens the possibility of differently defined dis-
tance functions. The proposed algorithm uses a greedy strategy to find such clusters in a
fast way [Cor01].

Both methods were applied to two pairs of RNA molecules and the results are compared to
the solutions found by state-of-the-art approaches RNA align and RNAforester [JLMZ02,
HTGK03].

1.4 Overview

In chapter 2 we give some preliminaries for the later developed methods. We introduce differ-
ent formalisms for the representation of RNA structures and explain two sequence-structure
motifs in detail. In the following we explain basics about related comparison methods like
sequence comparison methods as well as sequence-structure comparison methods. In chapter
3 we introduce all notions about exact pattern matches and how they are obtained by the
MCS algorithm. We give all necessary definitions on exact pattern matches needed for their
algorithmic usage.

1.4 Overview 10

Chapter 4 and 5 now present the two developed approaches. The LCS-ERP problem as
well as the dynamic programming algorithm to solve it is explained in chapter 4. The
proposed clustering algorithm with the different clustering strategies and distance functions
is presented in chapter 5.

Chapter 6 shows the achieved results for both methods applied to two pairs of RNA molecules.
The solution obtained by the LCS-ERP algorithm is also compared to two existing methods.
At the end of this chapter follows a discussion of the results. Chapter 7 concludes this thesis
with an outlook for future work.

Chapter 2

Preliminaries

This chapter gives at first an overview of the biopolymer ribonucleic acid (RNA). Starting
with its biochemical properties in section 2.1, we explain next the different levels of ab-
straction needed for RNA comparison methods. In section 2.2 we describe two motifs as
examples for functional sequence-structure motifs in RNA. In the following section 2.3 we
give basic aspects of pairwise sequence structure comparison. Finally we review in section
2.4 the general edit distance algorithm from Jiang et al. as the most general method for this
task.

2.1 Ribonucleic Acid (RNA)

Nucleic acids are biopolymers which consist of covalently linked nucleotides. In the case
of ribonucleic acid (RNA) a nucleotide is composed of a heterocyclic base, a ribose and a
phosphate group. The nucleotides are linked together by a phosphodiester bond between
the 3’ carbon and the 5’ carbon of adjacent ribose rings. This chain forms the backbone of
each RNA molecule. Additionally, each ribose is linked with either a purine or pyrimidine
base. Possible purine bases are adenine (A) and guanine (G) and possible pyrimidine bases
are cytosine (C) and uracil (U). DNA in comparison to RNA uses thymine instead of uracil
as well as a deoxyribose. Uracil is very similar to thymine, but energetically less expensive
to produce. Figure 2.1 below illustrates the backbone linkage and the chemical structure of
the four bases. In the following we define different levels of abstraction for the structure of
RNA molecules and give examples for their representation.

Primary Structure

The asymmetric linkage of the nucleotides induces a direction on the strand. By convention,
the 5’ end denotes the starting point and determines therewith the order of the linked bases
as well. This sequence of nucleotides is called primary structure and is defined as follows.
We assume throughout this work for every RNA the four letter alphabet Σ = {A,C,G,U}
as abbreviation for the above mentioned bases.

Definition 2.1.1 (Primary Structure)
Let Σ be a finite alphabet of nucleotides. A primary structure S is a sequence of nucleotides
S = 〈s1, s2, ..., sn〉, where n ∈ N and si ∈ Σ, for 1 ≤ i ≤ n.

2.1 Ribonucleic Acid (RNA) 12

Figure 2.1: The left image shows the linkage between the nucleotides. The right
image shows the four standard bases with the two standard Watson-Crick pairs.

With |S| we denote the length of the sequence S and S[i] denotes the nucleotide at position
i in sequence S. With S[i...j] we indicate a substring from S[i] to S[j] for 1 ≤ i < j ≤ |S|.
Please note that it is unimportant at this level of abstraction to distinguish between bases
and nucleotides. Therefore we refer to both terms equally.

Due to the fact that the primary structure determines the three-dimensional shape to a large
extend for many kinds of biopolymers, it is often sufficient to compare RNAs on this data.
From a sequence with a known structure one can infer the structure of homologous sequence.
In the first place the primary structure enables to find homologous sequences and provide
therewith the basis for many alignment methods given in section 2.3. An example for a
primary sequence is shown in figure 2.2.

Secondary Structure

Most RNAs occur as single stranded molecules that fold back onto itself. The formed struc-
ture is stabilized by hydrogen bonds between certain pairs of bases and stacking interactions
between neighbouring base pairs. The most prominent base pairs are formed between G-C,
A-U and G-U bases, ordered by their strength. The first two are usually called canonical
base pairs and are shown in figure 2.1, the G-U pair is a wobble base pair. In fact, in nature
exist a vast variety of base pairs and nearly all combinations occur even base triplets. But
their contribution to the overall stability is minor. For more information see books like ”The
RNA world“ [GCA06].

The following definition formalizes the structural interactions between bases. We call a set
of base pairs secondary structure. It is assumed that only pairs of bases are allowed and that
each base take part in at most one base pair.

Definition 2.1.2 (Secondary Structure)
Given a primary structure S, a secondary structure B over S is a set of pairs B = {(i, i′) | 1 ≤
i < i′ ≤ |S|}, where the tupel (i, i′) represents positions in S and indicate a hydrogen bond

2.1 Ribonucleic Acid (RNA) 13

between S[i] and S[i′]. Further it is required that no two base pairs (i, i′), (j, j′) ∈ B share
an endpoint, i.e.

∀(i, i′), (j, j′) ∈ B : i 6= j′, i′ 6= j and i = j ⇐⇒ i′ = j′ .

Figure 2.2 shows an example of a secondary structure with indicated base pairs.

Tertiary Structure

The tertiary structure of an RNA describes the three-dimensional arrangement of its atoms
and further structural motifs like helical regions. Although the previous abstraction lev-
els are reasonable, the tertiary structure is the key to understand all biological functions
and activities of the considered molecule. The main problem is to acquire this data. Our
knowledge of exact tertiary structure information is mainly obtained from methods like X-
ray crystallography and nuclear magnetic resonance (NMR) spectroscopy [GCA06]. These
methods are still expensive and time consuming.

Approaches exist which try to predict the secondary and tertiary structure information from
the primary structure alone. Methods like RNAfold try to predict the thermodynamically
most stable secondary structure [HFS+94]. However, the process of folding in vivo is in-
fluenced by different parameters and factors as well. Figure 2.2 shows a tertiary structure
model for a yeast PHE-tRNA obtained from X-ray diffraction (Protein Data Bank accession
id: 1EHZ [BWF+00]).

10 20 30 40 50 60 70

5' GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUUUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACAA 3'

Primary Structure

Secondary Structure Tertiary Structure

Figure 2.2: Three levels of structural information for a yeast PHE-tRNA. The ter-
tiary structure is taken from the Protein Data Bank, PDB id: 1EHZ.

2.1 Ribonucleic Acid (RNA) 14

Nested RNAs

The increased degrees of freedom in a tertiary structure are computationally hard to treat.
Therefore we focus in this thesis on the secondary structure as additional information. De-
pending on a given set of base pairs according to definition 2.1.2, one can distinguish different
classes of secondary structures. This is necessary because even on the basis of the secondary
structure comparison problems become easily NP-hard.

Definition 2.1.3 (Classes of Secondary Structures)
Given a primary structure S and a secondary structure B over S. Then the secondary
structure B is called

Crossing : if there is at least one crossing base pair in B, i.e.
∃(i, i′), (j, j′) ∈ B with i < j < i′ < j′,

Nested : if any two base pairs (i, i′), (j, j′) ∈ B are either independent, i.e.
i < i′ < j < j′, or nested, i.e. i < j < j′ < i′,

Plain : if there are no base pairs at all, i.e. B = ∅.

Note, that the term tertiary structure is also associated to a Crossing secondary struc-
ture. Specific crossing base pairs are also called pseudoknots [SB05]. Figure 2.4 d) shows a
secondary structure which contains crossing base pairs.

For the pairwise comparison of RNAs these classes determine the complexity of the alignment
or edit distance problem. For example, it is shown by Jiang et al. that even the edit distance
for Edit(Crossing,Plain) is MAX-SNP-hard [JLMZ02]. With a restriction to the scoring
scheme it exists a polynomial time algorithm for Edit(Nested,Nested). Details on these
problems are given in sections 2.3 and 2.4.

The two approaches we develop in this thesis require nested RNA secondary structures. If
it is not mentioned differently, we assume throughout this work RNAs given with a nested
secondary structure. For example, figure 2.2 shows a nested secondary structure. We define
an RNA molecule with a nested secondary structure as follows.

Definition 2.1.4 (RNA)
Given a primary sequence S and a nested secondary structure B over S. The according RNA
R is denoted by the pair

R = (S,B)

Structural Elements

Due to the fact that we consider only single stranded RNA molecules, each base pair (i, j) ∈ B
encloses a chain of nucleotides from S(i+1) to S(j−1). Such a chain is called loop and bases
from this loop can form base pairs as well. The resulting structure can be discriminated in
six different structural elements. Normally such a loop decomposition is used to determine
the energy contributions for the different elements. We use it especially as reference for
different shapes of pattern. Figure 2.3 summarizes the structural elements.

2.1 Ribonucleic Acid (RNA) 15

Figure 2.3: Loop decomposition for a nested RNA secondary structure. Figure taken
from [Sie06]

Considering a base pair (i, j) ∈ B. If all nucleotides within S[i+1 . . . j− 1] are not part of a
base pair, this element is called hairpin loop. Now we consider a second base pair (h, l) ∈ B
such that i < h < l < j. Depending on the number of nucleotides between i and h as well
as between l and j, we distinguish the following elements. If there is at least one nucleotide
between i and h and l = j+1, then this is a left bulge and if there is at least one nucleotide
between l and j and h = i + 1, then this is a right bulge. If both pairs are not adjacent,
this is called internal loop. The case of two adjacent base pairs is called stack. A several
number of stacking base pairs is called stem. If there are several stems which branch inside
base pair (i, j), this is called multi-loop.

Representations of Secondary Structures

Different approaches for the comparison of secondary structures require alternative ways of
representation. In figure 2.2 we have already used the two-dimensional structure plot. This
is the most convenient way of representation and is the best approximation of the underlying
tertiary structure. We use this format especially to indicate the found solutions from our
approaches.

Another widespread format is the dot-bracket notion for secondary structures shown in figure
2.4 a). Here a sequence is simply annotated with a sequence of dot and bracket symbols for
the representation of the secondary structure. Dots indicate unbound bases and brackets
indicate an outgoing hydrogen bond. This text-based format is often used as input format for
programs like RNAfold. Our implementation uses this format as well. The tree representation
from figure 2.4 c) is necessary for tree based algorithms like the tree edit distance algorithm
[ZS89].

Figure 2.4 d) shows an arc-annotated sequence. Here arcs represent base pairs. This repre-
sentation is beneficial to indicate edit operations on single bases and base pairs in one figure.
For example see figure 2.7. Arc-annotated sequences are also used to indicate common
subsequences.

2.2 Motifs and Locality 16

(((((((..((((........)))).((((.........)))).....(((((.......))))))))))))....

5' GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUUUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACAA 3'

a) dot-bracket representation

b) circular representation c) tree representation

d) arc-annotated sequence (Crossing)

Figure 2.4: Different possibilities to represent an RNA secondary structure. All
figures show a yeast tRNA. Please note that figure c) is a slight different tRNA and
figure d) includes crossing base pairs. Figures b) and d) are generated with jViz.RNA
[WG06], figure c) is taken from [Sie06].

2.2 Motifs and Locality

Motif is a widely used term in biology with different meanings. In terms of RNA a motif is of-
ten a three-dimensional part of the RNA molecule with a known or implied function in several
RNA molecules. Well known examples are iron-responsive elements (IRE), selenocysteine in-
sertion sequences (SECIS), internal ribosomal entry sites (IRES) and different riboswitches.
A good resource for different kinds of motifs is the Rfam database [GJMM+05].

The IRE motif is a small stem with a hairpin. The function of IREs is to bound to iron-
responsive proteins (IRP) which are involved in the iron metabolism. For example, the
mRNA of ferritin (an iron storage protein) contains an IRE in the 5’ UTR. When the iron
concentration is low, other IRPs bind to the IRE which leads to translation repression.

A SECIS element is a structural motif that directs the cell to translate the UGA codon
as selenocysteine. Normally the UGA codon is the stop codon. This is fundamental for
selenoproteins which contain one or more selenocysteine residues. Figure 2.5 shows a set of
mammalian SECIS elements occurring in different 3’ UTR mRNA regions.

IRES elements occur often in viral genomes. They allow the translation of the virus’ RNA
in a cap-independent manner. IRES elements bind to the 40S ribosomal subunit and initiate
the translation of the viral mRNA. A riboswitch is a structural motif in mRNAs that can

2.2 Motifs and Locality 17

Figure 2.5: A sample set of mammalian SECIS elements with the consensus motif
AUGA-AA-GA. Figure according to [KCN+03].

bind a target molecule. The absence or presence of this target molecule affects the gene’s
activity.

These mentioned motifs provide a classification based on their function. A different classifi-
cation is based on their structure. According to the introduced structural levels in section 2.1
we can distinguish sequence based motifs and sequence-structure based motifs. This leads
to the following view of locality.

Note on Locality

The comparison of RNAs reveal that motifs have a sharp locality, i.e some parts of the
molecules share a great similarity, whereas other parts are unrelated. Considering the pri-
mary structure alone, motifs can be described as pairs of subsequences. The nucleotides of
these subsequences are connected via backbone bonds which constitutes their dependency.
Local sequence alignment methods find local motifs in this way.

However, considering motifs like shown in figure 1.1 as well as the given examples above, these
motifs express a different locality. Here the indicated motif is not local if only the primary
structure is considered. The apparent similarity and locality is given by sequential and
structural features together, notably the included base pairs. Biologically this is meaningful
because sequence and structure is conserved during evolution.

This view imply the definition of a motif as (connected) substructure and provide the basis
for the developed methods in this thesis. The maximum common substructure algorithm
from Siebert and Backofen [SB07] described in section 3.4 is able to find such local sequence-
structure relationships. This algorithm identifies all exact matching substructures between
two RNAs. For example. the substructure shown in figure 1.1 can be found with this
algorithm. With the same view on locality but with the focus on inexact matchings, the
local sequence-structure alignment (LSSA) algorithm can be used [BW04].

2.3 Pairwise Sequence-Structure Comparison 18

2.3 Pairwise Sequence-Structure Comparison

Pairwise comparison of RNA or DNA sequences is an essential task in biological sequence
analysis with two main goals. According to the theory of evolution, sequences are derived
from common ancestral sequences. First, it is interesting to trace the evolutionary history
of mutations and other evolutionary changes. Sequence comparison in this context is under-
stood as a measure of the evolutionary relatedness, called homology. The second line tries to
figure out similar sequences or regions with putative similar functions. Due to the fact that
a biological function in RNAs often coincides with similar structural properties as shown
in section 2.2, the incorporation of structural information is mandatory. The approaches
developed in this thesis follow this line of research.

From a theoretical point of view the similarity or homology of two sequences can be measured
with the number of mutations, insertions and deletions of bases which are necessary to
transform one sequence into the other. First, we introduce this concept for sequences alone
and afterwards we give an overview in which way secondary structure information can be
incorporated. A different measure for similarity are common subsequences. We introduce
this concept for sequences and sequences with additional structural information.

2.3.1 Sequence-Based Comparison

The comparison of sequences can bee seen under two different aspects. The first tries to
quantify the similarity between two sequences whereas the other focus on their distance. A
similarity measure associates a numeric value with a pair of sequences with the idea that a
higher value indicates greater similarity. In biology similarity measures are associated with
alignments which shows the conserved regions. The concept of distance is dual to this with
the idea that a larger distance imply a smaller similarity and vice versa.

The simplest notion of distance is the so-called Hamming Distance [Gus97]. For two se-
quences of equal length the number of different characters is count. A more general distance
measure is defined as the minimum number of edit operations to transform one sequence into
the other. In order to compare sequences with different lengths, an additional gap symbol
“-” is needed. The permitted edit operations are defined as follows.

Definition 2.3.1 (Edit Operation)
Given an finite alphabet Σ, we define an edit operation as pair

(x, y) ∈ (Σ ∪ {−})× (Σ ∪ {−}).

Further we call an edit operation (x, y)

insertion, if x = − and y ∈ Σ,
deletion, if x ∈ Σ and y = −,

substitution, if x, y ∈ Σ with x 6= y.

2.3 Pairwise Sequence-Structure Comparison 19

In the following we assume two given sequences a, b over a finite alphabet Σ. Then we write
a→(x,y) b if sequence b can be obtained from sequence a by a replacing of one occurrence of
x by y, or by deleting one occurrence of x (if y = −), or by inserting one occurrence of y (if
x = −). Usually a single edit operation is not sufficient to transform one sequence into the
other. Then we need a sequence of edit operations E = e1, . . . , er with a = a(0) →e1 a

(1) →e2

· · · →er a
(r) = b. In short we will write this as

a⇒E b .

The edit operations insertion and deletion can be seen as symmetric cases and in biology
they often combined as indel operation. With these definitions it is possible to formulate
optimization problems on edit distances. The edit transcript that comprises the minimal
number of edit operations is the so-called Levenshtein Distance [Gus97]. More general ap-
proaches assign a weight ω(x, y) to edit operations and score the cost of a sequence of edit
operations E = e1, . . . , er as

ω(E) =
r∑

i=1

ω(ei) .

Such a weight-based cost function allows a good adaptation to different problems and sce-
narios in biology. Now we can formulate the general optimization problem for edit distances
as follows.

Definition 2.3.2 (Edit Distance)
Let Σ a finite alphabet and a, b two sequences over Σ. Further let ω : (Σ∪{−})×(Σ∪{−})→
R a cost function and E a sequence of edit operations. Then we define the edit distance of
a, b as

dω(a, b) = min{ω(E) | a⇒E b}.

Obviously the solution depends mainly on the chosen cost function. A reasonable class of
cost functions is defined as metric. This imply that equal sequences have no distance, i.e.
if a = b then d(a, b) = 0, as well as the cost function is symmetric, i.e. d(a, b) = d(b, a).
Further, a metric holds the triangle inequality, i.e. d(a, c) ≤ d(a, b) + d(b, c).

Sequence Alignment

Like introduced above, alignments are strongly related to the problem of edit distances.
Therefore it is possible to solve both problems with a similar method. In the following
we first define alignments in general. Second we show in short their relationship to edit
distances. Then we describe a standard method to solve both problems.

Definition 2.3.3
Let Σ be a finite alphabet without the gap symbol, i.e. − 6∈ Σ, and a, b two sequences over
Σ. Further let ΣA the alignment alphabet (Σ ∪ {−}). Two sequences â, b̂ over ΣA denote a
pairwise alignment A if

1. The aligned sequences have equal length, i.e. |â| = |b̂|,

2.3 Pairwise Sequence-Structure Comparison 20

2. Sequence â gives a and sequence b̂ gives b if all gaps are removed,

3. There is no position i such that âi = − = b̂i.

For example suppose two sequences a =AUGCACAGAA and b =AUCCGACGAC. A possible align-
ment is

â = AU--GCACAGAA
b̂ = AUCCG-AC-GAC

Similar to the cost of an edit transcript, we can define the cost of an alignment as ωA(â, b̂) =∑|â|
i=1 ω(âi, b̂i). Now we can measure the distance of an alignment similar to the edit distance

as

dAω (a, b) = min{ωA(â, b̂) | (â, b̂) is alignment of (a, b)}.

In other words, the alignment (â, b̂) is optimal if dAω (a, b) = ωA(â, b̂). The important implica-
tion is that for every alignment (â, b̂) of (a, b) there exists a sequence of edit operations E such
that a ⇒E b and ω(E) = ωA(â, b̂) for a metric cost function ω. Second, for every sequence
E such that a⇒E b, there exists an alignment (â, b̂) of (a, b) that hold ω(â, b̂) ≤ ω(E).

For more details on sequence alignments and edit distances we refer to standard literature
like [Gus97, CB00]. Summarizing, there are three important implications as a consequence
from cost models for sequence alignment:

1. The cost of an alignment of two sequences a and b is the sum of the costs of all edit
operations that lead from a to b.

2. An optimal alignment of a and b is an alignment which has minimal cost among all
possible alignments.

3. The edit distance of a and b is the cost of an optimal alignment of a and b under a
cost function ω.

Global Sequence Alignment Methods

Due to the strong relation between edit distances and optimal alignments it is possible to
solve both problems with similar methods. Today exists a vast variety of algorithms for
sequence alignment with different approaches. Most of them use dynamic programming
(DP) techniques for finding optimal solutions in an efficient manner. The main idea of DP
is constructing the overall optimal solution from optimal subproblems. Richard Bellman
introduced this technique in the 1940s. The central result of dynamic programming is a
single recursion formula for the optimization problem.

Basically, one can distinguish between methods which find alignments covering the whole
sequence and methods which calculate optimal local alignments covering only subsequences.
Global methods are useful for comparing sequences of a functional family of different species

2.3 Pairwise Sequence-Structure Comparison 21

whereas local methods are used to find particular domains or functional subunits. First
methods for global sequence alignment were given by Needlemann and Wunsch [NW70] and
Gotoh (affine gap cost) [Got82]. First local methods were developed by Smith and Waterman
[SW81] and Altschul et al. (BLAST) [AGM+90].

In the following we give some details for the Needleman-Wunsch algorithm as one of the first
approaches for global sequence alignment. Given a metric cost function ω and two sequences
S1 and S2, the recursion formula to obtain an optimal alignment is given as

D(i, j) = min


D(i− 1, j − 1) + ω(S1[i], S2[j])
D(i− 1, j) + ω(S1[i],−)
D(i, j − 1) + ω(−, S2[j])

(2.1)

with 1 ≤ i ≤ |S1| and 1 ≤ j ≤ |S2|. The three cases indicate in which way a single field in a 2-
D matrix is filled. The matrix needs an appropriate initialization of D(0, 0), D(i, 0), D(0, j)
with the indel costs up to position i and j. The algorithm fills the matrix from D(1, 1)
at the upper left corner to the lower right corner D(|S1|, |S2|). This position contains the
alignment distance of both sequences. The corresponding alignment is obtained from a
traceback through the filled matrix. With a constant cost model, this algorithm needs
O(nm) time and O(nm) space. The traceback needs additional O(n+m) time [Gus97].

In general, the term ”cost“ implies typically positive values which have to be minimized
for the overall task. Terms like ”scores“ or ”weights“ are positive or negative and they
are used for similarity measures, which means they have to be maximized. Moreover, gap
costs can be modeled separately in order to adopt the alignment to biological processes like
the intron/exon structure of cDNA. For a good summary we refer to standard literature
[Gus97].

Longest Common Subsequence

A special case of optimal sequence similarity is the longest common subsequence (LCS)
[Hir77]. With an adopted scoring scheme, the LCS problem can be solved with methods for
normal sequence alignment.

Definition 2.3.4 (Subsequence)
Given two Sequences S and S′ over some alphabet Σ, S is a subsequence of S′, if S can be
obtained from S′ by deleting some letters from S′.

Note that the subsequence S need not consist of consecutive letters in S′. That is the main
difference to a substring. As a common subsequence one denotes a subsequence shared by
two or more sequences. For the pairwise case we can formulate the problem as follows.

Definition 2.3.5 (Longest Common Subsequence)
Given two Sequences S1 and S2 over some alphabet Σ. The longest common subsequence is
a sequence T which is a subsequence of both S1 and S2 and has maximal length.

2.3 Pairwise Sequence-Structure Comparison 22

The problem LCS can be computed with a recursion given in formula (2.1), if one uses a
maximization together with a scoring scheme that scores a match with one and all mismatches
with zero. Given two RNAs with their sequence lengths n = |S1| and m = |S2|, the problem
LCS for two RNAs is solvable in O(nm) time and O(nm) space.

2.3.2 Sequence-Structure Comparison

According to the edit distances for plain sequences one can define edit distances for sequences
given with their primary and secondary structures. The main problem for the design of
algorithms is that the problem becomes easily NP-hard. Zhang et al. have shown that for
Edit(Crossing,Crossing) [ZWM00] and Jiang et al. [JLMZ02] showed that already the
case Edit(Crossing,Plain) is MAX SNP-hard under arbitrary scoring schemes. Recently
the most interesting problem for molecular biology EDIT(Nested,Nested) was proven to
be NP-hard as well [BFRS03]. These findings imply that there exists no polynomial time
algorithms to solve these problems efficiently.

Here we focus on nested structures because our approaches are based on nested RNAs as
well. Although the general problem is NP-hard, there exist polynomial time algorithms
which compare sequential information along with structural information. In the case that
two RNAs are given with their primary and nested secondary structure several methods
exist like from Zhang and Shasha [ZS89], Eddy [Edd02], Bafna et al. [BMR95], Jiang et al.
[JWZ95, JLMZ02].

The proposed methods for nested structures differ in general in the representation of the
secondary structure. Visualized in figure 2.4 c), Zhang and Shasha [ZS89] and Jiang et al.
[JWZ95] use ordered labeled trees with base pairs as internal nodes. The Zhang/Shasha
algorithm needs O(|T1| |T2| min(depth(T1), leaves(T1))min(depth(T2), leaves(T2))) time to
compute the minimum edit distance between two trees T1 and T2.

Although tree alignments achieve good results, there are two general drawbacks for using
trees in the context of alignments. First, edit distance and alignment distance can be different
for two trees. Like for plain sequences the edit distance of trees describes a sequence of
predefined edit operations (deletion, insertion, relabeling) on nodes and leaves to transform
one tree into the other. However, the alignment of two trees consists of inserting nodes with
gap symbols in order to get two identical trees except for their labels. See figure 2.6 for this
difference.

Figure 2.6: (a) and (b) show two different trees. (c) shows the alignment of both
trees. Figure according to Jiang et al. [JWZ95].

2.3 Pairwise Sequence-Structure Comparison 23

For example, assume a cost function with cost 1 for all edit operations. The optimal sequence
of edit operations is obtained by deleting node e and inserting the node labeled f . Hence,
the edit distance is 2. The optimal alignment however is the tree shown in 2.6 c) with a
value of 4. In contrast, as stated in point three for the general results of sequence alignment
in section 2.3.1, edit and alignment distance are equal for plain sequences.

Second, and that is the most decisive point against tree alignment, an arbitrary sequence
alignment is not necessarily a valid tree alignment. This is the case, if a base pair is aligned
with one or two gap symbols. This case is not recognized as change operation and hence it
is not an allowed tree edit operation.

Better suiteable for arbitrary alignments are methods based on arc-annotated sequences like
the works from Bafna et al. [BMR95] and Jiang et al. [JLMZ02]. An example of an arc-
annotated sequence is shown in figure 2.4 d). The algorithm from Bafna et al. [BMR95] was
already capable to align a base pair as whole or not within a time complexity of O(n2m2).
Jiang et al. [JLMZ02] proposed an algorithm which needs O(n3m) time to handle any
arbitrary alignment but with a specific scoring scheme. This is the most important work in
the context of sequence-structure comparison and is reviewed in section 2.4.

Local sequence-structure comparison methods exists as well. Notably is the local sequence-
structure alignment algorithm from Backofen and Will [BW04]. This approach uses a scoring
scheme comparable to the general edit distance scheme from Jiang et al. [JLMZ02]. The
algorithm has a time complexity of O(n2m2 max(n,m)) and a space complexity of O(nm).

Longest Arc-Preserving Common Subsequence (LAPCS)

According to the LCS problem for primary structures, the Longest Arc-Preserving
Common Subsequence Problem (LAPCS) describes the extension to higher structural
levels. This model for sequence similarity was introduced by Evans [Eva99] and received
much attention in literature in the last years [JLMZ00, LCJW02, GGN02]. In biology the
LAPCS problem is useful as a similarity measure for comparing sequence with secondary
structure information. The problem can be defined as follows.

Definition 2.3.6 (Longest Arc-Preserving Common Subsequence (LAPCS))
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2). LAPCS is the problem to find the
longest common subsequence of S1 and S2 which preserves the arcs, i.e. to find a mapping
MLAPCS ⊆ {1, ..., |S1|} × {1, ..., |S2|} of maximal size such that:

1. MLAPCS is a bijective mapping and preserves the order of the subsequence:
∀(i, j), (i′, j′) ∈MLAPCS : i = i′ ⇐⇒ j = j′, i < i′ ⇐⇒ j < j′

2. the base pairs induced by MLAPCS are preserved:
∀(i, j), (i′, j′) ∈MLAPCS : (i, i′) ∈ B1 ⇐⇒ (j, j′) ∈ B2

3. MLAPCS produces a common subsequence:
∀(i, j) ∈MLAPCS : S1[i] = S2[j]

2.4 General Edit Distance of RNA Structures 24

Depending on the complexity of the arc set B, the complexity to solve the problem varies.
Similar to the edit distance problem, it is shown by Jiang et al. that LAPCS(Nested,
Nested) is NP-hard [LCJW02]. If the complexity of the second structural type is Plain
or Chain, which means all (i, i′) ∈ B hold only the independence condition, LAPCS can be
solved in polynomial time [JLMZ00].

2.4 General Edit Distance of RNA Structures

In order to handle any arbitrary pairwise alignment from primary and secondary structures,
Jiang et al. introduced a method for generally scoring alignments [JLMZ02]. The main
idea from Jiang et al. is to define the edit distance for arc-annotated sequences via sequence
alignment instead of an edit transcript. Arcs are treated as basic unit of comparison and they
could be aligned to single bases as well as to gaps. Tree alignments and also the covariance
model lack this generality as they focus on local structures and treat them as subunits.

According to Jiang et al. and the notions from section 2.1, an RNA is defined with its
primary and secondary structure, denoted as pair (S,B). Further any (i, i′) ∈ B is drawn
as arc in addition to the straight sequence. A picture of such an arc-annotated sequence is
given in figure 2.4 d). Consequently edit operations from sequence alignment (see def. 2.3.1)
have to be extended with structural edit operations performed on arcs.

In the following we describe the general problem and in section 2.4.2 we describe in detail
the proposed polynomial time algorithm for EDIT(Nested,Nested).

2.4.1 Edit Operations and Problem Description

Considering two arc-annotated sequences (S1, B1) and (S2, B2) and a specific sequence align-
ment A. The performed edit operations given by A can be distinguished between operations
on arcs and its incident bases and operations on bases. A base without an incident arc is
called free base.

Base Operations: Possible edit operations for bases are the same as for standard sequence
alignment, i.e. base match, base mismatch and base deletion/base insertion. If a base S1[i] is
aligned to S2[j] and S1[i] = S2[j] then 〈S1[i], S2[j]〉 is a base-match if it is not involved in any
arc operation. If S1[i] 6= S2[j], then 〈S1[i], S2[j]〉 is a base-mismatch. Aligning a base S1[i]
with a gap, this is a base-insertion in S1 and a base-deletion in S2. If there is an alignment
of a base S2[j] with a gap in S1, this holds vice versa. Note that the bases in these mutation
operations are not necessarily free. An example is given after the arc operations.

Arc Operations: Suppose two arcs (i, i′) ∈ B1 and (j, j′) ∈ B2 such that S1[i] is aligned
to S2[j] and S1[i′] is aligned to S2[j′]. If S1[i] = S2[j] and S1[i′] = S2[j′], this is an arc-
match operation and if S1[i] 6= S2[j] or S1[i′] 6= S2[j′], then they form an arc-mismatch. An
arc-breaking occurs if the bases are aligned as above but (j, j′) /∈ B2. If an arc (i, i′) ∈ B1

is aligned with one base, say j, and with one gap, this is an arc-altering operation, as the
arc from B1 is broken. Further an arc-removing occurs if an arc is aligned with two gaps.
This completely removes the arc as the two bases are deleted. The last three operations
can be summarized as arc-deletion operation, as they have a break of an arc in common.

2.4 General Edit Distance of RNA Structures 25

Biologically these arc operations can be interpreted as evolutionary events like changing or
removing bases on base pairs. A summery of the edit operations shows figure 2.7. Further a
distance measure requires a cost associated to each edit operation.

Figure 2.7: The allowed edit operations for an alignment of two arc-annotated se-
quences. Figure according to [JLMZ02].

Cost Scheme: The main idea is to separate costs for arc operations and that for base
operations and computing costs for arcs first. For example, suppose an alignment of an arc
(i, i′) ∈ B1 with a base j ∈ S2, S1[i] 6= S2[j] and a gap. Then the costs are composed from
an arc-altering operation plus a base-mismatch operation. An arc-match and a base-match
cost nothing as a distance measure is used. Further a base-mismatch has cost ωm and a base
deletion ωd. An arc-mismatch has cost wam

2 or ωam depending on the bases of the two arcs
involved. Suppose again two arcs with S1[i] is aligned to S2[j] and S1[i′] is aligned to S2[j′].
If S1[i] 6= S2[j] or S1[i′] 6= S2[j′], then the arc-altering cost is wam

2 , whereas if both pairs of
aligned bases are unequal, the cost is ωam. An arc-breaking has cost ωb, an arc-altering has
cost ωa and an arc-removing has cost ωr which is usually ωr ≥ ωd.

Problem Description

With these six edit operations (ωm, ωd, ωam, ωb, ωa, ωr) it is possible to form a legal series
of edit operation for any alignment. Recall now the three results for alignment and edit
distances from section 2.3. Similar to the edit distance of two sequences, the edit distance of
two arc-annotated sequences is defined as the minimum cost of the alignments of the two se-
quences. Equivalently the problem is to compute the optimal series of edit operations which
transforms the first sequence into the second one along with an optimal sequence alignment.
Jiang et al. called this the Edit Distance Problem for Arc-Annotated Sequences
under a fixed scoring scheme for the six parameters. The complexity of this problem de-
pends mainly on the complexity of the given arc structures of the two input sequences,
denoted as Edit(Type1,Type2). Jiang et al. showed that the problem Edit(Nested,
Plain) is MAX-SNP-hard for an arbitrary scoring scheme. But with some restrictions to
the scoring scheme, they were able to formulate a polynomial time algorithm for the case
Edit(Crossing, Nested) and Edit(Nested, Nested).

2.4 General Edit Distance of RNA Structures 26

2.4.2 A polynomial time algorithm for EDIT(Nested, Nested)

Jiang et al. proposed an algorithm which solves the case Edit(Crossing, Nested) in
O(n3m) time and O(n2m) space. In addition they give an improved algorithm which needs
O(n2m2) time and only O(nm) space. Here we focus on the case Edit(Nested, Nested)
for which the same bounds hold and go into detail to the improved space version.

The reduction in complexity is achieved with a class of scoring schemes satisfying the con-
dition 2ωa = ωb + ωr. Now it is possible to omit the explicit calculation of the operations
arc-altering and arc-removing as they could be incorporated in the remaining operations.
Every arc-altering operation is handled as an arc-breaking operation plus a base-deletion
which has cost ωr−ωb

2 . Further any arc-removing operation is handled as an arc-breaking
operation plus two base-deletions each of which has cost ωr−ωb

2 . In addition, Jiang et al.
introduced two functions to simplify the algorithmic writing:

ψk(l) =
{

1, if Sk[l] is not a free base
0, otherwise

(2.2)

χ(i, j) =
{

1, if S1[i] 6= S2[j] (base-mismatch)
0, otherwise

(2.3)

With formula 2.2 the cost of deleting a base S1[i] is (1 − ψ1(i))ωd + ψ1(i)ω′d = ωd +
ψ1(i)(ωr−ωb

2 − ωd), with ω′d = ωr−ωb
2 as stated above as cost for deleting a base with an

incident arc. The key idea to discard also the arc-breaking operation is to split its costs
equally among its two incident bases and charge an additional cost of ψ1(i)ωb

2 for base S1[i]
if the arc is broken. The improvement in space complexity is achieved with the same idea
of splitting costs applied to base-match and base-mismatch operations. The remaining arc
operations arc-match and arc-mismatch can be handled by using formula 2.3. Consequently,
the following formulas handle all arc and base operations:

base-deletion: ωd + ψk(l)(ωr
2 − ωd) (2.4)

base-match/ base-mismatch: χ(i, j)ωm + (ψ1(i) + ψ2(j)) ωb
2 (2.5)

arc-match/ arc-mismatch:
(
χ(i′, j′) + χ(i′, j′)

)
ωam

2 (2.6)

According to formula 2.5, the cost of a base-match with two free bases is zero; if one base
is free, the cost is ωb

2 and if both bases are not free, the cost is 2 · ωb
2 = ωb. Applied to a

base-mismatch, formula 2.5 yields for two free bases the cost ωm; if one base is free, the the
cost is ωw + ωb

2 and if both bases are not free, the cost is ωm +2 · ωb
2 = ωm +ωb. Using formula

2.6, an arc-match costs zero and an arc-mismatch costs either ωam
2 or ωam, depending on the

number of mismatches.

The recurrence relation for a dynamic programming algorithm to solve Edit(Nested,
Nested) is given as follows. Note that (i, i′) and (j, j′) are not necessarily base pairs.

2.4 General Edit Distance of RNA Structures 27

For any 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ j′ ≤ m,

DP (i, i′, j, j′) = min



DP (i, i′ − 1, j, j′) + ωd + ψ1(i′)(ωr
2 − ωd),

DP (i, i′, j, j′ − 1) + ωd + ψ2(j′)(ωr
2 − ωd),

DP (i, i′ − 1, j, j′ − 1) + χ(i′, j′)ωm + (ψ1(i′) + ψ2(j′))ωb
2 ,

DP (i, r − 1, j, s− 1) +DP (r + 1, i′ − 1, s+ 1, j′ − 1)
+(χ(r, s) + χ(i′, j′))ωam

2

if i ≤ r, j ≤ s, (r, i′) ∈ B1, (s, j′) ∈ B2.

(2.7)

To compute all combinations, the algorithm needs O(n2m2) time. To store all entries, one
could expect the same space complexity. However, the reduction to O(nm) is achieved as it
is sufficient to maintain DP (i+1, i′−1, j+1, j′−1) only if (i, i′) ∈ B1 and (j, j′) ∈ B2. This
could be clarified as follows. There are maximal O(n) arcs for the first sequence and maximal
O(m) arcs for the second sequence. If the arcs are computed from inside to outside and taking
arcs with minimal size first, this needs only O(nm) space to store for all combinations of
arcs their minimum costs. Another O(nm) matrix is now filled in the manner of classical
alignment while using the stored minimum costs for the arc intervals. With this analysis we
can give the following conclusion according to Jiang et al. 2002. Under any scoring scheme
satisfying 2ωa = ωb +ωr, the problem Edit(Nested, Nested) is solvable in O(n2m2) time
and O(nm) space.

A reasonable cost scheme for (ωm, ωd, ωam, ωb, ωa, ωr) was also given by Jiang et al. with the
values (1, 1, 1.8, 1.5, 1.75, 2).

Chapter 3

Exact Matchings in RNA Structures

In this chapter we give prerequisites needed to use common substructures in RNA molecules
for the pairwise comparison approaches in chapter 4 and 5. Section 3.1 introduces our
concept of exact pattern matches (EPMs) as common substructures with exact sequential
and structural properties of two RNA secondary structures. Considering two RNAs with a
known secondary structure, there exist maximal n·m different EPMs which cross and overlap
each other. However, this limited set imply additional properties which are useful for the
algorithmic usage of exact pattern matches. These features are summarized in section 3.2.

The main goal is to find a good arrangement of a selection of non-crossing and non-overlapping
exact pattern matches. Therefore notions and definitions are introduced in section 3.3 to han-
dle the sequential and structural properties of EPMs as well as the relationships of different
exact pattern matches in an algorithmic manner. A fast detection of exact pattern matches
is an important precondition. Therefore, we review in section 3.4 the maximum common
substructure algorithm (MCS) from Siebert and Backofen [BS04, SB07] which identifies all
crossing and overlapping EPMs for two nested RNA secondary structures.

3.1 Basic Definitions for Matchings

In the following we give notions for exact patterns in two nested RNA secondary structures.
Our terms are based on the articles for the MCS-algorithm [BS04, SB07]. First we define a
substructure as a connected pattern in a single RNA secondary structure. In the following
we extend this to an exact matching pattern in two RNAs. This is achieved with an exact
matching path of nucleotides with identical sequential and structural properties in both
RNAs. We call this the exact pattern match (EPM) problem.

Patterns in one RNA

Here we focus on exact sequence-structure patterns in a single RNA in contrast to approx-
imate patterns. In addition to pure sequential patterns, the crucial point for sequence-
structure patterns is the incorporated structural context of each single nucleotide part of
the pattern. Clearly, the structural context of a nucleotide is formed by structural adjacent
nucleotides. Considering a single RNA secondary structure, this is achieved with either a
backbone bond (phosphodiester bond) or an hydrogen bond. A set of nucleotides connected
by these bonds is a primitive pattern. We call this path and it is defined as follows. Note, it

3.1 Basic Definitions for Matchings 29

doesn’t matter how often a nucleotide is taken into the path. The function S[i] returns the
nucleotide for position i.

Definition 3.1.1 (Path)
Let R = (S,B) be a given RNA. A path in R from a nucleotide at position i to a nucleotide
at position j is a sequence of positions 〈p1, p2, .., pk〉 such that p1 = i and pk = j and there
exist either a backbone bond or a hydrogen bond between S[pl−1] and S[pl], for l = 2, ..., k,.

A pattern in a single RNA is defined as a set of positions which holds the path condition.
Each nucleotide position in a pattern is connected via a path with every other nucleotide
position in the same pattern. With other words, the locality of a pattern ends with the
”borders” of the pattern. We denote such borders as bounds. Different definitions on bounds
are given in section 3.3.

Definition 3.1.2 (Pattern)
Let R = (S,B) be a given RNA. A pattern P of size k in R is a set of positions P =
{p1, p2, ..., pk} such that for any two nucleotides S[pi] and S[pj], pi, pj ∈ P, there exists a
path from pi to pj completely lying in P.

Figure 3.1: The figure shows two patterns P1 and P2 with P1 = {11, 12, 13, 14, 15}
and P2 = {2, 3, 4, 17, 18, 19}.

Figure 3.1 shows a simple example of two patterns. For later it is important to show, if two
patterns have one nucleotide position in common, then these two patterns are connected.

Proposition 3.1.1 (Connected Pattern)
Given two patterns P1 = {p1, p2, ..., pi} and P2 = {q1, q2, ..., qj} for an RNA R = (S,B). If
there exists at least one nucleotide position nc such that nc ∈ P1 and nc ∈ P2, then the union
of the two patterns is connected, i.e. it is a pattern.

Proof. Suppose there exists a position nc with nc ∈ P1 and nc ∈ P2. For any nucleotide at
position np ∈ P1, there exists a path 〈np, ..., pc〉 such that each nucleotide on the path is
lying in the first pattern. The same holds for any nucleotide position nq ∈ P2. Hence, there
exists a path from any nucleotide at position np ∈ P1 to nc to any nucleotide at position
nq ∈ P2.

Matchings Over Two RNAs

Given the definition of a pattern in a single RNA, we extend this definition to two RNAs.
This requires for each nucleotide position of an exact matching identical sequential and
structural properties as well as an identical structural context.

3.1 Basic Definitions for Matchings 30

Clearly, the smallest matching between two RNAs is an identical nucleotide with an identical
structural property. In contrast to pure sequence alignment, our approach implies looking
at the structural type of a nucleotide.

Consider two arbitrary RNAs with R1 = (S1, B1) and R2 = (S2, B2). Further let V1 with
V1 = {r | 1 ≤ r ≤ |S1|} the set of positions for R1 and V2 with V2 = {s | 1 ≤ s ≤ |S2|} the
set of positions for R2. Si[j] denotes the nucleotide at position j in sequence i. The function
STRUCTi(j) yields the structural type for a nucleotide at position j in structure i. For a
secondary RNA structure, three structural types for any single nucleotide are feasible: single
stranded (ss), left paired (lp) or right paired (rp). If the nucleotide is not involved in any
base-pairing interaction, then this is called single stranded or unbound. If the nucleotide is
left paired, then the base-pair partner has a higher position in the sequence. If a nucleotide
is right paired, then the base-pair partner has a lower position.

The set of nucleotides identical with their primary and secondary structure in two RNAs is
called partial matching and is defined as follows.

Definition 3.1.3 (Partial Matching)
The partial matching M between two RNAs R1 and R2 is a set of pairs M ⊆ V1 × V2. M
describes a partial mapping between V1 and V2 with the following conditions:

1. ∀(r, s) ∈M : S1[r] = S2[s] (nucleotide condition)

2. ∀(r, s) ∈M : STRUCT1(r) = STRUCT2(s) (structure condition)

The first two conditions apply to single nucleotides only, but single bases can be further part
of a base pair. This case is already given with both conditions, because for any two partial
matchings (r, s), (r′, s′) ∈M with (r, r′) ∈ B1 and (s, s′) ∈ B2 follows that S1[r] = S2[s] and
S1[r′] = S2[s′]. Note that it is not implicated that always the whole bond has to be part of
the matching. Here, we refer to one or a set of pairs (r, s) ∈M as a single partial matching
or some partial matchings, if we are in the context of two specific RNAs with their partial
matchingM.

Figure 3.2: The figure shows three arbitrary partial matchings between the left and
right RNA. The pairs (13, 9), (16, 19), (18, 19) are elements from the setM.

Now we want to combine these partial matchings in a way that ensures the same structural
context in both secondary structures. Clearly, a pattern in the first RNA is matched with a
pattern in the second RNA and vice versa. In our context, a match is always an exact match
which means that the connected condition is not sufficient for a set of partial matchings.
Further on, such a set have to guarantee the same sequential and structural context of the
partial matchings, i.e. there is a backbone bond with a similar orientation or a hydrogen

3.1 Basic Definitions for Matchings 31

bond between two partial matchings. According to the original article [BS04], we make use
of the transition type function:

τR(i, i′) =


+1, if i = i′ + 1
−1, if i = i′ − 1

0, if (i, i′) ∈ B
undefined, otherwise

(3.1)

for a given RNA R = (S,B) and two nucleotide positions i, i′. The three transition types
describe the relative order of two adjacent sequence positions. The cases +1 and −1 denote
two consecutive nucleotides in the sequence strand. The third case denotes two structural
adjacent nucleotides in form of a base pair. According to the path and pattern definitions,
two partial matchings with the same transition type in the respective RNA form a pattern
and therefore a path as well. Analogously the definitions for one RNA, we first define a
matching path and then a matching pattern.

Definition 3.1.4 (Matching Path)
Given two RNAs R1 = (S1, B1), R2 = (S2, B2) and the partial matching M over R1 and
R2. A matching path is a sequence of pairs 〈(r1, s1), ..., (rk, sk)〉 with (ri, si) ∈M, 1 ≤ i ≤ k,
such that:

1. 〈r1, ..., rk〉 is a path in R1,

2. 〈s1, ..., sk〉 is a path in R2,

3. the transition types are defined and equal: τR1
(ri, ri+1) = τR2

(si, si+1) for each 1 ≤ i <
k.

The definition of a matching pattern is now straightforward, as it is only necessary to ensure
that for any two positions of the matching pattern the matching path is completely part of
the pattern.

Definition 3.1.5 (Matching Pattern)
Given two RNAs R1 = (S1, B1), R2 = (S2, B2) and the partial matching M over R1 and
R2. A matching pattern of size k is a set of pairs MP ⊆ M with k = |MP | such that for
any two pairs (ri, si), (rj , sj) ∈ MP there exists a matching path completely lying in MP ,
i.e. (r, s) ∈ 〈(r1, s1), . . . , (rk, sk)〉 ←→ (r, s) ∈MP

Obviously the sets {r | (r, s) ∈MP} ⊆ V1 and {s | (r, s) ∈MP} ⊆ V2 are patterns according
to definition 3.1.2. Therefore we can call a matching pattern also connected matching. For
later definitions and algorithmic usage is is necessary to verify that a matching pattern
preserves the backbone order.

Proposition 3.1.2 (Backbone Order)
LetMP be a matching pattern over two nested RNAs R1 = (S1, B1), R2 = (S2, B2). Further
let (r, s), (r′, s′) ∈MP . Then it follows r < r′ if and only if s < s′.

3.1 Basic Definitions for Matchings 32

Proof. Suppose two pairs (r, s), (r′, s′) with r > r′ and s < s′. Further suppose two paths,
one from r to r′ in R1 and the other from s to s′ in R2.

First, we suppose (r, s), (r′, s′) are connected by one backbone bond which imply that they
form a path completely lying in {(r, s), (r′, s′)}. As r > r′, the transition type is τB1 = +1
on the path in R1. For the path in R2 the type is τB2 = −1 as s < s′. But this contradicts
the condition of equal transitions types.

Second, suppose (r, s), (r′, s′) form a base pair, i.e (r, r′) ∈ B1 and (s, s′) ∈ B2. The transi-
tions types are equal (both 0), but from r > r′ it follows that r is right paired and r′ is left
paired. For s and s′ the types are vice versa. But that contradicts the condition of equal
structure types for partial matchings.

Third, suppose equal structure types for both pairs, but (r, s), (r′, s′) are not directly adja-
cent. Then there are at least two nucleotides on each path which are adjacent but violate
either the condition for equal transition types or equal structure types according to first
or second case. Note that there is no base pair on each path which violates the nested
condition.

Definition 3.1.5 is already capable to describe the highlighted substructure in the putative
SECIS elements in figure 1.1. However, a matching pattern do not necessarily preserves
bonds. Figure 3.3 a) shows a correct matching pattern, but the base pair from the stem
in the left RNA is matched to different stems from a multi-loop in the right RNA. Such a
mutational event could happen, but in general structural properties are conserved during
evolution and therefore we want to prefer bond-preserving matchings. Note that backbone
bonds are not necessarily preserved in a matching pattern as shown in figure 3.3 b). Here
the matching pattern is connected via an alternative matching path.

Figure 3.3: Matchings which do not preserve bonds. a) The hydrogen bond (i, i′) is
not preserved. This case is excluded for an exact pattern match. b) Here the backbone
bond between i and i− 1 is not preserved. This is unimportant for an exact pattern
match. Figure according to [BS04].

As a second restriction we exclude all sub-optimal matching patterns, because no additional
information is obtained from these matchings. Only matching patterns with the largest
possible size are considered. We call such patterns maximal extended. This leads to the
following definition for the final object for our later approaches.

Definition 3.1.6 (Exact Pattern Match)
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2). Further let MP ⊆ P1 × P2 a matching
pattern of size k over two patterns P1 = {r1, ..., rk} ⊆ V1 and P2 = {s1, ..., sk} ⊆ V2. An
exact pattern match E is defined as E ⊆MP , such that:

3.2 Properties of the Set of Exact Pattern Matches 33

1. for any two pairs (r, s), (r′, s′) ∈ E: (r, r′) ∈ B1 ⇔ (s, s′) ∈ B2 (bond-preserving
condition) and

2. E is maximally extended, i.e. ∀E ′ : E ⊆ E ′ ⇒ E ′ = E.

An example for an exact pattern match is given in figure 3.4. The maximal extension of that
match can be verified as well. Every extension leads to a mismatch and every exclusion of
one position from the match leads to an sub-optimal match.

Figure 3.4: The green nucleotides denote a maximally extended exact pattern match
between the left and the right RNA.

As the size of the patterns is |P1| = |P2| = k, we can denote the size of an exact pattern
match with |E| = k, as well. Note again that the minimal size of an exact pattern match is 2,
as we are interested in relationships higher than single base matches. This follows also from
the definition of a pattern. Note that we refer with the term matching to an exact pattern
match.

The algorithm in section 3.4 follows the maximal extension condition and exclude all sub-
patterns from the output set. Moreover this condition has some important consequences on
the set of all exact pattern matches for two RNAs. See section 3.2 for details. Nevertheless,
we are left with some cases with an unclear situation how to define a maximally extended
match. See figure 3.11 b) on page 44 for such a case. The algorithm given in 3.4 solve these
cases correct and returns only one maximally extended match for each matching pattern.
See section 3.4 for details.

3.2 Properties of the Set of Exact Pattern Matches

An exact pattern match E describes an exact matching substructure between two RNAs.
Usually, there are many EPMs between two RNAs. The algorithm in section 3.4 deals
with this task and returns matchings for two RNAs according to definition 3.1.6. With an
appropriate traceback it is possible to retrieve all exact pattern matches in O(nm) time and
O(nm) space. As the discussed approaches in chapter 4 and 5 are based on this set, here
some general properties are given.

Definition 3.2.1 (Set of Exact Pattern Matches)
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2). The set of all exact pattern matches E
over R1 and R2 is defined as

E1,2
γ =

{
{E} | E is EPM ∧ |E| ≥ γ

}
.

3.2 Properties of the Set of Exact Pattern Matches 34

Assuming that smaller motives are less meaningful, γ denotes the lower bound for the size of
the exact pattern matches included in E1,2

γ . This can be also useful for complexity reasons
of the used comparison method. If no value is given, this refers to all possible exact pattern
matches between the two RNAs. Clearly, the smallest possible size of an exact pattern match
is 2.

Uniqueness of EPMs

Recall that any sub-matching pattern E ′ ⊆ E of an exact pattern match E is not contained
in E1,2

γ . The important implication is that any two exact pattern matches do not share the
same partial matchings, i.e. for any two Ei, Ej ∈ E1,2

γ follows Ei ∩ Ej = ∅. With other words,
any single exact matching base (r, s) ∈ E with E ∈ E1,2

γ , (r, s) ∈ M ⊆ V1 × V2, is part of
exactly one E and therefore this partial matching is unique in E1,2

γ .

Proposition 3.2.1 (Unique EPM)
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2) with their set of exact pattern matches
E1,2

γ . Then it follows ∀Ei, Ej ∈ E1,2
γ , Ei 6= Ej =⇒ Ei ∩ Ej = ∅.

Suppose the case that two exact pattern matches contain the same exact partial matching.
Then it follows that they are either identical or one of them is not maximally extended. Of
course, two exact pattern matches can overlap, even in both RNAs. But this case imply that
one exact pattern match has to match to another region of the other exact pattern match.

Maximal Number of EPM

From proposition 3.2.1 it is possible to determine the maximal size of E1,2
γ .

Proposition 3.2.2 (Maximal Number of EPMs)
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2) with their set of exact pattern matches
E1,2

γ . Further the lengths of the sequences are given with |S1| = n, |S2| = m. Then then
there are maximal (n ·m) different exact pattern matches within E1,2

γ .

There are maximal V1 × V2 different combinations for a partial matching. Thus, the size of
the set is 0 ≤ |E1,2

γ | ≤ (n ·m), as the set can be also empty. The size of each exact pattern
match is limited as well. Obviously, the maximal size is bounded by the RNA with the
minimal sequence length.

Library of EPMs

The set E1,2
γ can be seen as a library of all similarities between two given RNAs. Finding

a simple, but unique representation for each exact pattern match is straightforward from
above. According to proposition 3.2.1, a single partial matching (r, s) ∈ E is sufficient to
identify the whole exact pattern match. Using always a specific partial matching out of the
whole EPM, this can be advantageous in algorithmic usage. For example, we select always the
partial matching with the maximal indices to simplify the exclusion of overlapping cases.

The following lemma summarizes the given properties of the set E1,2
γ .

3.3 Structural Definitions on Exact Pattern Matches 35

Lemma 3.2.1 (Properties of a Set of Exact Pattern Matches)
Given two RNAs R1 and R2 with their sequence lengths |S1| = n and |S2| = m. Further
Vj = {i | 1 ≤ i ≤ |Sj |} denote the set of positions for RNA j. Providing there is a method
to find exact pattern matches E over two RNAs, the properties of the set of discovered exact
pattern matches, written as E1,2

γ , are summarized as follows:

1. The set E1,2
γ contains |E1,2

γ | = k exact pattern matches over R1 and R2, with 0 ≤ k ≤
(n ·m).

2. The set E1,2
γ comprises all possible exact pattern matches over R1 and R2.

3. Each exact pattern match E ∈ E1,2
γ is of size 2 ≤ γ ≤ |E| ≤ MIN(n,m).

4. Any two exact pattern matches are disjoint: ∀Ei, Ej ∈ E1,2
γ : Ei ∩ Ej = ∅.

Similar is that for all (r, s) ∈ M ⊆ V1 × V2, there exists exactly one E ∈ E1,2
γ with

(r, s) ∈ E or (r, s) is not part of any E ∈ E1,2
γ .

Visualization of Exact Pattern Matches

Within the scope of this thesis, it has been a task to find a way for visualizing exact pattern
matches as well as sets of exact pattern matches E1,2

γ . For applications in biology it is
very helpful to have a more convenient representation of the underlying objects. With the
above given properties a matrix representations seems predetermined. In bioinformatics and
biology such dot plots are often used to visualize pairwise information.

Suppose a matrix with the positions of sequence S1 at the x-axis and the positions of S2 at
the y-axis. According to point 4 from lemma 3.2.1 above, it is possible to mark all exact
pattern matches for the given RNAs in a plain way, i.e. there are no overlapping entries in
this matrix. Here we just give a short example of such a dot plot of exact pattern matches.

Figure 3.5 below shows the set E1,2
γ for two Hepatitis C virus IRES RNAs (see section 6.3 for

details). Each exact pattern match is indicated in a different color. All dots belonging to the
same exact pattern match are either diagonal adjacent or connected with a small additional
line. This line indicates further that a base pair is part of the exact pattern match. Such
an illustration is also helpful to visualize compatible arrangements of exact pattern matches.
See section 3.3 for details.

The shown dot-plot in figure 3.5 is the output of a Java program which was written during
this thesis. The input file is a structured XML file with all data about the exact pattern
matches. This file can be generated with our implementation for the algorithms of chapter
4 and 5.

3.3 Structural Definitions on Exact Pattern Matches

The exact pattern matches included in E1,2
γ differ in their size and shape as well as in

their structural positions in both RNA. Considering for example the maximum common
substructure, i.e. the EPM with the largest size, or a special found EPM like the indicated
substructure in figure 1.1, this can be sufficient information from an analytic or biologically

3.3 Structural Definitions on Exact Pattern Matches 36

Figure 3.5: A dot-plot of exact pattern matches for two Hepatitis C virus IRES
RNAs (bases 1-96). Each EPM has a different color. Grey lines indicate that a base
pair is part of the EPM.

point of view. Considering two or several exact pattern matches, then they probably overlap
or cross each other as well as they can be “near” in the first RNA, but “far” away in the
other structure.

The main goal of the approach treated in this thesis is to identify sets of exact pattern
matches for two RNAs which can be used for a pairwise comparison. This means, such a set
should exclude overlapping and crossing patterns in general. For example, see figure C.1 in
the appendix which was taken from the article for the MCS algorithm. The five highlighted
EPMs satisfy this condition. If one follows the backbone in both RNAs, the EPMs appear
in the same order. For a comparative analysis it is obviously important, if two or more
substructures occur in such a way. Suppose for example a motif which needs some correct
arranged substructures for its working. Therefore we also speak about arrangements of exact
pattern matches. In the following we give basic definitions for exact pattern matches in their
structural context.

Non-Crossing

In order to maintain the structural order of exact pattern matches in two RNAs, we define an
invariant condition for any arrangement of exact pattern matches. Consequently, we are able

3.3 Structural Definitions on Exact Pattern Matches 37

to check if two EPMs are compatible or not. Suppose a set E1,2
γ of EPMs as shown in figure 3.6

below. For example, a good subset comprises the exact pattern matches {E1, E2, E3, E4}, but
we want to exclude E5 and E6. The match E5 is crossing E2 and E3 whereas E6 is overlapping
with E3 in R1 and with E4 in R2. Note that not all possible EPMs are indicated in the
figure.

Figure 3.6: A set of possible exact pattern matches between the left RNA (R1) and
the right RNA (R2). The set {E1, E2, E3, E4} can be used for a comparison, whereas
{E5, E6} should be excluded. E5 crosses E2 and E3. E6 is overlapping with E3 in R1

and with E4 in R2 .

From the viewpoint of a fixed EPM, we distinguish the following relative structural order-
ings. According to definition 2.1.4, any two base pairs (i, i′), (j, j′) ∈ B are either nested or
independent. Following the nesting condition i < j < j′ < i′, we denote a base pair (j, j′) as
inside of base pair (i, i′) and analogously is (i, i′) outside of (j, j′). Further, any nucleotide
or base pair within 〈1, .., i− 1〉 is located before base pair (i, i′) and similarly the positions
〈i′ + 1, ..., |S|〉 are located after base pair (i, i′).

Now we apply these orderings to EPMs. This is possible, because an exact pattern match is
connected. See figure 3.7 below for an illustration of these cases. Consequently, we define two
EPMs as structural compatible, if they preserve the structural ordering for any two positions
in both RNAs. We denote structural compatible matchings as Non-Crossing and they are
defined as follows.

Definition 3.3.1 (Non-Crossing)
Given two RNAs R1 and R2 and further two exact pattern matches E1, E2 over R1, R2.
Two exact pattern matches E1, E2 are Non-Crossing if either

1. ∀(ri, si) ∈ E1,
∀(rj , sj) ∈ E2 with ri < rj : si < sj (E1 before E2) or

2. ∀(ri, si), (ri′ , si′) ∈ E1,
∀(rj , sj) ∈ E2 with ri < rj < ri′ : si < sj < si′ (E1 outside E2).

Note that the orderings after and inside are symmetric cases of the given ones. Further we
define the following short forms for the structural ordering of two exact pattern matches over

3.3 Structural Definitions on Exact Pattern Matches 38

Figure 3.7: Ordering of exact pattern matches relative to EPM E1. The cases before,
inside and after do not violate the Non-Crossing condition. Only EPM E3 crosses
E1. Note that an arc denote a connected matching via base pairs.

two RNAs:

E1 crossing E2 : E1 G E2
E1 before E2 : E1
 E2 (3.2)
E1 outside E2 : E1 b E2

The Non-Crossing condition is only satisfied, if an exact pattern match is located com-
pletely before, after or inside the other connected matchings. Therefore it is not necessary
to treat Non-Overlapping in an extra condition, because it is already included in Non-
Crossing. Note that definition 3.3.1 is given in a general form. From figure 3.7 it is evident
that checking the start and end from consecutive nucleotide positions is sufficient for verifying
Non-Crossing.

With proposition 3.1.2 we have already shown, that a single EPM preserves the backbone
order. According to other pairwise comparison methods like the general edit distance ap-
proach or the LAPCS problem, we want to find a subset of EPMs which is a plain mapping
as well as an arc-preserving subsequence.

Proposition 3.3.1 (Non-Crossing Preserves Backbone Order)
Given two RNAs R1 = (S1, B1) and R2 = (S2, B2) and two Non-Crossing exact pat-
tern matches E1, E2 from a set E1,2

γ over R1 and R2 . Further let (r1, s1), (r′1, s
′
1) ∈ E1 and

(r2, s2), (r′2, s
′
2) ∈ E2. Then it follows either (1) r1 < r2 if and only if s1 < s2 or (2) r1 > r2

if and only if s1 > s2 or (3) r1 < r2 < r′1 if and only if s1 < s2 < s′1 or (4) r2 < r1 < r′2 if
and only if s2 < s1 < s′2, i.e. E1 and E2 preserve the backbone order in S1 and S2.

Clearly, two Non-Crossing EPMs preserve the backbone order as well. This is achieved in
definition 3.3.1 with the similar nucleotide orderings (before/outside) for both EPMs in both
RNAs. This can be also verified in figure 3.7 above.

3.3 Structural Definitions on Exact Pattern Matches 39

Matching Bounds

Each exact pattern match is embedded into the secondary structure at an specific point.
Clearly, there exist nucleotide positions which limit the substructure from the structure
around. For example, if an exact pattern match is part of a multi-loop, then it can be part
of different stems. Here we give some definitions and notions to describe these boundaries.

First, we focus on patterns according to definition 3.1.2, i.e. patterns in a single RNA. Writ-
ing the nucleotide positions of a pattern as an increasing sequence, there exists a minimum
and maximum position. In the view of the secondary structure, these two position determine
the outside borders of the pattern. Therefore we call them outside-bounds. In the view of an
arc-annotated sequence, we denote the minimum as left bound and the maximum as right
bound.

If a pattern contains a base pair, the structural shape is more complex and the outside-
bounds are not sufficient to describe all structural borders of a pattern. Suppose a base pair
(i, j) ∈ B within a pattern. Then the pattern not necessarily contains all nucleotides from
S[i+1] to S[j−1]. With other words, there exist two positions (i′, j′) with i ≤ i′ < j′ ≤ j that
form an additional structural border, lying inside the range of the outside-bounds. Clearly,
if a pattern contains several independent base pairs, there can be several inside borders.
The set of all such borders is called inside-bounds. The following definition summarizes all
bounds for a pattern.

Definition 3.3.2 (Pattern Bounds)
Let R = (S,B) a given RNA and P be a pattern of size k. Further let P = 〈p1, p2, ..., pk〉
be an increasing sequence of positions of P for that hold: ∀ i, j : i < j ⇔ pi < pj, then the
following bounds are defined:

outside-bound-left : LEFT = p1

outside-bound-right : RIGHT = pk

outside-bounds : OUT = (p1, pk)

inside-bounds : IN = { (pi, pi+1) | pi+1 > pi + 1}

Note again that outside-bounds always exists, whereas the set inside-bounds can be empty.
If a pattern comprises only unbound nucleotides or a complete hairpin inclusive the closing
bond, this results in a complete consecutive sequence. In contrast, an inside-bound (pi, pi+1)
represent two non consecutive positions of a pattern. All nucleotides between S[pi + 1] and
S[pi+1−1] are not part of the pattern. If a pattern consists of only one base pair, then inside
and outside bounds are identical.

Next, we apply these notions for a pattern in one RNA to an exact pattern match over two
RNAs. We have shown in section 3.1 that a single EPM preserves the backbone order. This
implies an ordering on the included partial matchings, i.e. ∀(r, s), (r′, s′) ∈ E : r < r′ ⇔ s <
s′. Now we can define the matching bounds for an exact pattern match as follows.

Definition 3.3.3 (Matching Bounds)
Given an exact pattern match E of size k over two RNAs R1 and R2 with its corresponding
pattern positions P1 in R1 and P2 in R2. Further the two patterns are given with their

3.3 Structural Definitions on Exact Pattern Matches 40

Figure 3.8: The green nucleotides denote a pattern of an exact pattern match in one
RNA. The indicated positions represent the different pattern bounds.

increasing sequences. For pattern P1 the sequence is 〈r1, r2, ..., rk〉, ∀ri, rj ∈ P1,∀ i, j : i <
j ⇔ ri < rj and for pattern P2 the sequence 〈s1, s2, ..., sk〉 is defined similarly. Then we
define the following matching bounds:

outside-bounds-left : LEFTE = (r1, s1)

outside-bounds-right : RIGHTE = (rk, sk)

outside-bounds : OUTE =
〈
(r1, rk), (s1, sk)

〉
inside-bounds : INE =

{〈
(ri, ri+1), (sj , sj+1)

〉
|

ri+1 > ri + 1⇔ sj+1 > sj + 1}

Note the slight difference to the pattern bounds. Each element in INE represents a loop
excluded in R1 and R2 if and only if in both patterns two positions are not consecutive. An
EPM can be consecutive in one RNA, but not in the other RNA. For example, imagine two
hairpins of different size and an exact pattern match between these hairpins. One pattern
comprise the whole hairpin, whereas the other comprise only a part. In this case the set INE
is empty.

Further we define for all different matching bounds a notion to retrieve the bounds from a
single RNA. For example, we denote the matching bounds for RNA R1 with LEFT1

E = r1,
RIGHT1

E = rk and OUT1
E = (r1, rk). For clarity we give the definition for the inside-bounds.

Suppose the two pattern sequences 〈r1, r2, ..., rk〉 and 〈s1, s2, ..., sk〉 given as above. Then we
define for RNA R1:

IN1
E = {(ri, ri+1) | ∃ 〈(ri, ri+1), (sj , sj+1)〉 ∈ INE :

ri+1 > ri + 1⇔ sj+1 > sj + 1}
(3.3)

3.4 A Fast Method to Detect Exact Pattern Matches 41

Matching Closure

In the following we introduce our notion of a matching closure. A closure is depicted by filling
up the two corresponding patterns of an EPM with all positions from base pair partners not
included in the original matching.

Definition 3.3.4 (Matching Closure)
Given an exact pattern match E over two RNAs R1 and R2 with the corresponding pattern
positions P1 in R1 and P2 in R2. Then we define the matching closure E as:

E = E ∪
{

(r′, s′) | ∃r ∈ P1,∃s ∈ P2 :(r, r′) ∈ B1 ⇔ (s, s′) ∈ B2 ∨

(r′, r) ∈ B1 ⇔ (s′, s) ∈ B2

}
Due to the maximal extension condition of an EPM, the additional pairs of nucleotide po-
sitions do not represent partial matchings. This case occur for exact pattern matches with
different base pair partners in the different structures, i.e. there is a non-canonical base pair
like G-U in one structure and a standard pair in the second. Otherwise the pattern is not
maximally extended. Figure 3.9 shows an example of a matching closure.

Figure 3.9: Additional nucleotides in a matching closure. Suppose the green
nucleotides denote an exact pattern match. Then the red-marked nucleotide
positions are additional pairs in E . The given matching bounds are INE =
{〈(6, 13), (6, 17)〉 , 〈(24, 31), (28, 34)〉} and OUTE = 〈(3, 36), (3, 39)〉.

The clustering approach in chapter 5 uses always a matching closure E instead of the origi-
nal E to determine the matching bounds. Due to the additional nucleotide positions, we
can rewrite the patterns from a matching closure E as P1 = {r1, r2, ..., rk′} and P2 =
{s1, s2, ..., sk′} with k′ ≥ k. The resulting matching bounds INE , OUTE , LEFTE and RIGHTE
are now determined via the increasing sequences based on P1 and P2. We omit an extra
definition for that case.

3.4 A Fast Method to Detect Exact Pattern Matches

In this section we review the fast algorithm from Siebert and Backofen [SB07] to obtain the
set E1,2

γ of all maximally extended and bond-preserving substructures between two nested
RNA secondary structures. The developed dynamic programming algorithm detects these

3.4 A Fast Method to Detect Exact Pattern Matches 42

substructures in form of exact pattern matches in O(nm) time and O(nm) space. In this the-
sis we usually refer to this approach as the maximum common substructure (MCS) algorithm.
In the following we describe the main algorithmic steps of the MCS algorithm according to
the notions from Siebert and Backofen [SB07].

Basic Notions for the Algorithm

The input of the MCS algorithm consists of two nested RNAsR1 = (S1, B1) andR1 = (S2, B2)
with their lengths |S1| = n and |S2| = m. In order to find an exact pattern match for each
combination of nucleotide position i from the first RNA and j from the second RNA, the
key idea of the algorithm is to maintain three n×m matrices M eb, Mnb and M loop. These
matrices correspond to the different cases of matchings: M eb handles complete base-pair
matchings, Mnb handles matchings of only left or right paired nucleotides and M loop handles
matchings of inner loops.

Inner loops are all loops which are enclosed by a base pair. All inlying nucleotides of an inner
loop are simply numbered consecutively. The resulting sequence of positions for an inner loop
enclosed by a base pair (i, i′) ∈ B is given as 〈l1, l2, . . . , lsize〉 and is called loop-walk. This
scheme is applied to all loops like hairpins, bulges, internal loops and multi-loops. Figure
3.10 shows the nucleotide numbering. The global position of a loop position is accessed via
the function pos(li). For example, pos(lsize) = i′ − 1, if (i, i′) ∈ B encloses a loop from
l1, . . . , lsize.

Figure 3.10: Numbering of nucleotide position for an inner loop. The figure shows
an inner loop with lsize = 11. The loop is enclosed by base pair (i, i′).

The algorithm works from inside to outside. Suppose an internal loop closed by a base pair
(i, i′). Then all base pairs (j, j′) that hold i < j < j′ < i′ are treated before (i, i′). We
start with a description of the subfunctions which handle the loop-walk, base-pair matchings
and none base-pair matchings. For the loop-walk an additional function is needed which
combines the matrices M eb and Mnb and returns the size of a maximally extended pattern
found so far for a inner loop position in the first and second RNA. This function is called
max-matching. Function loop-walking(i, j)

This function is called from the main function with LoopWalking(i, j) to determine exact
pattern matches in inner loops. Here i and j correspond to positions from the first and
second RNA. The pseudocode is given in algorithm C.1 on the appendix.

The function Loop-walking iterates through all combinations of inner loop positions. The
necessary values lisize and ljsize for the loop sizes can be determined in advance. First, the
while loop from line 8 to line 11 determines the number of matching inner loop nucleotides for

3.4 A Fast Method to Detect Exact Pattern Matches 43

a pair (k, l) of loop positions clockwise. The index r denotes this number and the maximally
extended matching for a pair (k, l) of loop positions is then determined with a call to the
function max-matching(i, j, r). Note that each pair (k, l) is only considered once (line 7).
This means that if the size of the matching nucleotide array is at least 2, then the value of
M loop need not be recomputed. This information can be stored in a binary n×m matrix.

Auxiliary Function max-matching(i, j, r)

This function is invoked with max-matching(i, j, r) from the loop-walking function, whereby
i and j denote inner loop positions from the first and second RNA. The number of matching
loop positions is given with r. max-matching returns the size of the new common sub-
structure found up to the given positions. The pseudo code for max-matching is given in
algorithm C.2 in the appendix.

This function operates on loop positions as well. The size of the current substructure is
found with the help of M eb and Mnb. The necessary entries are already determined due to
the inside to outside scheme. Starting in line 3, the function checks whether the nucleotides
are equal. If not, the current size is returned. If yes, both nucleotides have to be tested for a
equal structure type (line 4: single stranded, line 6: left paired, line 11: right paired). Clearly,
if both nucleotides are unpaired, the size is increased with one. If also both nucleotides with
their base pair partner are equal, the size for this base-pair match is found in M eb. If the
base-pair partner are not equal, the size is found in Mnb. This implies that the matching
cannot be further extended and the current size is returned.

Function base-pair-match(i, j)

This function determines the value M eb, i.e. a base pair (i, i′) ∈ B1 in the first RNA is
matched with a base pair (j, j′) ∈ B2 in the second RNA. The function have to distinguish
two cases, because the nucleotides of a matching path in the inner loop to the right can
overlap or not with the nucleotides of a matching path to the left. Both cases are shown in
figure 3.11 below. The pseudocode is omitted.

Case 1: The matching paths to the right of i and j do not overlap with the matching
paths to the left of i′ and j′. Then the entry for the matching base pair is M eb(i, j) =
M loop(i+1, j+1)+M loop(i′r, j

′
r)+2, i.e. the length of the left matching path plus the length

of the right matching path plus the matching base pair. The ends of the right matching paths
are denoted with i′r and j′r. See figure 3.11 a) for this case. After M eb(i, j) is computed,
M loop(i + 1, j + 1) and M loop(i′r, j

′
r) are set to 0, because these values are now included in

M eb(i, j). This prevents the output of not maximally extended matchings.

Case 2: In this case the matching path to the left and to the right overlap. This case is
shown in figure 3.11 b). The two “A”s before the cutting line in the left RNA can be part of
a matching path to the left or to the right in the right RNA. This is the only situation where
the assignment of an exact pattern match becomes ambiguous. To avoid an exponential
number of solutions, only one maximal extended matching can be considered. This can be
easily extracted by looking at a subarray which contains the overlapping nucleotides. For
this array, the algorithm add and subtract the corresponding max-matching values. Then
the cut which provides a maximum value is chosen, whereby i′c and j′c denote the positions

3.4 A Fast Method to Detect Exact Pattern Matches 44

Figure 3.11: Two cases for a base-pair matching (i, i′) with (j, j′). a) The matching
path to the left and to the right from (i, i′) and (j, j′) do not overlap (case 1). b)
Here the matching path overlap in the left RNA (case 2). The cut determines a single
maximally extended exact pattern match for the matching base pairs. Figure taken
from [BS04]

directly after the cut. Note that base pairs are preserved in this step. The value M eb(i, j) is
similar to case 1 and also the M loop entries are set to 0 afterwards.

Function none-base-pair(i, j)

This function handles the case if a left paired or a right paired nucleotide in the first RNA is
matched to a nucleotide of the same structure type, but the base pair partners are different.
Consequently, an overlapping of such nucleotides is not possible and each entry of Mnb can
be computed independently. The algorithmic code is omitted, but the structure is simply.
The function is called only on left-paired nucleotides and checks either i and j are matching
left-paired nucleotides or i′ and j′ are matching right-paired nucleotides. If this succeeds,
the entry Mnb(i, j) is computed from the corresponding M loop entries.

Main Function, Traceback and Complexity

The main function determines exact pattern matches from inner to outer loop. This is
achieved with a list of base pairs (i, bp(i)) from the first RNA and base pairs (j, bp(j)) from the
second RNA ordered from inside to outside. For each loop, the function loop- walking(i+
1, j+1) is called. The functions base-pair-match(i, j) and none-base- pair(i, j) are called
according to the current matching cases. Note that a virtual base pair is assumed which
closes the external loop (1, |S1|) and (1, |S2|).

The sizes of all exact pattern matched are stored in M loop. With a traceback through this
matrix according the given matching cases, all matchings can be extracted. If also the cut
positions are stored, the traceback is possible in linear time for each exact pattern match.

The time complexity is given with O(nm), because for each (i, j) combination the loop-
walking function is executed. All subfunctions do not increase the time complexity, because
inner loops do not overlap each other in one RNA. Further, all considered nucleotides are
marked by the function max-matching. Therefore, each combination of inner loop positions
is considered almost twice. The function base-pair-match works also on inner loop posi-
tions. Finding the cutting line costs not more than the size of the inner loop. The function
none-base-pair has only the cost of finding the matching path to the right of the right
base-pair partner.

3.4 A Fast Method to Detect Exact Pattern Matches 45

The space complexity is O(nm), because the necessary marices M eb, Mnb and M loop are of
size n×m. Additional matrices for the storage of the cut positions as well as to save already
considered nucleotides do not exceeds the given space complexity.

Results

According to the article [SB07], the MCS algorithm was performed in a first test on two
Hepatitis C virus IRES sites. The GenBank codes are AF165050 and D45172. The optimal
secondary structures have been determined with RNAfold [HFS+94]. Figure C.1 on page 104
in the appendix shows both RNAs. The five largest exact pattern matches are highlighted.
We have tested our methods we the same RNAs. For example, the LCS-ERP approach is
able to combine these five exact pattern matches in one solution. For example, see figure 6.1
in chapter 6 as well as section 6.3.1.

In a second test, the MCS algorithm was performed on putative SECIS elements in non-
coding regions of Methanococcus jannaschii. Figure 1.1 shows a strongly conserved region
in different RNAs found with the MCS algorithm by pairwise comparison. The RNAs for the
putative SECIS elements were chosen according to [WSPB97].

Chapter 4

The Longest Common Subsequence of Exact
RNA Patterns

The problems LCS and LAPCS analyse pairwise similarities of RNAs at a sequence and
sequence-structure level, respectively. In this chapter, we present a related, but new problem
of finding the Longest Common Subsequence of Exact RNA Patterns (LCS-ERP).
It respects the secondary structure in form of exact matchings obtained by the approach
from Siebert and Backofen [SB07] given in the last chapter. In section 4.1, we give a formal
description of LCS-ERP. In section 4.2 we develop a dynamic programming algorithm solving
the LCS-ERP problem. This problem is solvable in O(n2m2) time and O(nm) space (section
4.3), in contrast to the LAPCS problem which is in general NP-hard. However, the obtained
arc-preserving subsequence for the LCS-ERP problem is based exclusively on exact pattern
matches, which excludes single nucleotide matchings.

4.1 Problem Description for LCS-ERP

Recall from the last chapter, the set E1,2
γ contains all exact pattern matches for two RNAs

and can be computed in O(nm) time and O(nm) space [SB07]. Relating to the LCS and
LAPCS problems, we introduce the problem Longest Common Subsequence of Exact
RNA Patterns (LCS-ERP).

The formulation of LCS-ERP is motivated by the fact that different RNA secondary structures
share the same complex sequence-structure patterns. For example, the SECIS motif shown
in figure 2.5 on page 17 includes two necessary substructures. The two consecutive unbound
alanine nucleotides are separated by helix II from the quartet substructure. Another example
is the comparison of experimentally verified secondary structures. For biology, it would be
interesting to know a “common core” of identical substructures in two rRNAs to identify
relationships between different species. Such an example is shown in figure 6.5 on page 80.

Here, we are interested in the maximal arrangement of substructures shared by two RNAs.
If the motives are given in the form of exact pattern matches according to definition 3.1.6,
we call this the LCS-ERP problem. Note that we make use of the properties of the set E1,2

γ of
all exact pattern matches given in lemma 3.2.1 as well as the fact that a single exact pattern
match preserves the backbone order.

4.1 Problem Description for LCS-ERP 47

Definition 4.1.1 (Longest Common Subsequence of Exact RNA Patterns)
Given two nested RNAs R1 = (S1, B1) and R2 = (S2, B2) and a set of exact pattern matches
E1,2

γ over these two RNAs. LCS-ERP is the problem of finding the longest common subsequence
of S1 and S2 which preserves the exact pattern matches in E1,2

γ ; i.e. finding a mapping
MERP ⊆ {1, ..., |S1|} × {1, ..., |S2|} of maximal length such that:

1. for each pair (r, s) ∈MERP there exists one exact pattern match in E1,2
γ :

∀(r, s) ∈MERP : ∃E ∈ E1,2
γ with (r, s) ∈ E and E ⊆MERP

2. MERP is a bijective mapping and preserves the order of the nucleotides:
∀(r, s), (r′, s′) ∈MERP : r = r′ ⇐⇒ s = s′, r < r′ ⇐⇒ s < s′

The definition follows the LAPCS problem given in definition 2.3.6 on page 23. In condition
one we claim that for each pair (r, s) ∈ MERP, i.e. for any exact matching nucleotide,
there exists one exact pattern match in E1,2

γ . In addition, condition one includes that the
complete EPM is part of MERP. The second condition ensures that the found subsequence
is a common subsequence, i.e. a sequence which preserves the backbone order. Arcs or
base pairs are induced by the EPMs itself. In contrast to the LAPCS problem, an isolated
nucleotide is not part of any solution for LCS-ERP due to the fact that the set E1,2

γ contains
only exact matchings with comprise at least two connected nucleotides.

With the idea that each EPM has a size according to the matched bases, we search for a
subset of maximal size out of E1,2

γ .

Proposition 4.1.1 (Maximal Subset)
A subset E1,2

LCS =⊆ E1,2
γ of Non-Crossing exact pattern matches with maximal size

s =
∑

E∈E1,2
LCS
|E| yields a solution for LCS-ERP.

Proof. The proof is straightforward, because each pair (r, s) ∈MERP can be seen as partial
matching fromM and all EPMs are defined on these partial matchings. Further, each EPM
itself preserves the backbone order and any two EPMs preserve the backbone order via the
Non-Crossing condition. This holds for any induced base pairs as well. Any two EPMs
with base pairs are either nested (inside/outside condition) or independent (before/after
condition) by the Non-Crossing demand. Thus, a maximal subset is a longest common
subsequence of exact RNA patterns.

Recall from section 3.2 that we operate on a limited set of only n·m possible matchings in form
of exact pattern matches. Further, there is also only a limited number of matchings which
fulfil the Non-Crossing condition for each matching, both for EPMs with base pairs and for
EPMs without base pairs. This reduces the overall complexity and enables a polynomial-time
algorithm.

In the next section we propose an algorithm to solve LCS-ERP in polynomial time.

4.2 Dynamic Programming Algorithm for LCS-ERP 48

4.2 Dynamic Programming Algorithm for LCS-ERP

Here, we develop a dynamic programming algorithm solving the LCS-ERP problem inO(n2m2)
time and O(nm) space. For the rest of this section we consider two nested RNAs given as
R1 = (S1, B1) and R2 = (S2, B2). With the notion Si[m,n] we refer to a substring from
Si[m] to Si[n] which denotes a consecutive part out of the complete sequence Si. Further we
denote the set of nucleotide positions for a sequence Sj with Vj = { i | 1 ≤ i ≤ |Sj |}.

The proposed algorithm combines ideas from sequence and sequence-structure comparison
methods. Sequence alignment methods such as the Needleman-Wunsch recursion scheme
shown in formula 2.1 uses a two-dimensional matrix to compute the optimal alignment. The
incorporation of the secondary structure requires a comparison of substructures, i.e. of the
subsequences enclosed by a base pair. This leads to a four-dimensional matrix, denoted as
D(i, j, k, l), because all pairs of possible subsequences have to be treated. The indices i, j
refer to a substring S1[i, j] and the indices k, l to a substring S2[k, l], respectively. Methods
such as the simultaneous folding algorithm from Sankoff [San85] as well as the alignment
of base pair probability matrices from Hofacker et al. [HBS04] uses such four-dimensional
matrices.

In a first version of the algorithm, we use a similar four-dimensional matrix D(i, j, k, l) to
save the best partial solution for LCS-ERP for any pair of substrings over S1 and S2. In the
following, we propose an improved algorithm, which only needs a two-dimensional matrix in
each step and reduces therewith the space complexity to O(nm).

Recursion Formula

In relation to alignment-based methods, we use a similar bottom-up approach to construct
the overall solution for the complete sequences S1 and S2 from subsequences S1[1, i] and
S2[1, l]. However, we have to treat an exact pattern match as whole unit, whereas alignment
approaches are based on single nucleotides or base pairs. Moreover, we have to find a Non-
Crossing subset of exact pattern matches.

A solution is achieved with the different notions of bounds for an exact pattern match E
introduced in section 3.3. We make use of these bounds to easily find Non-Crossing
regions relative to an EPM as well as to find the start and end of an EPM. For example,
all nucleotides before the left-outside-bounds LEFTE , i.e Si[1, LEFTi

E − 1], fulfil the Non-
Crossing condition. Similar all nucleotides after the right-outside-bounds, i.e. Si[RIGHTi

E+
1, |Si|]. With other words, any EPM with its outside-bounds OUTE in these region is Non-
Crossing relative to the considered EPM.

Similar we handle EPMs that contain base pairs. For example consider an EPM as shown in
figure 3.8. Here the indicated pattern exclude two subsequences given through the inside-
bounds. Consequently, any pair of inside-bounds {(ri, ri+1), (sj , sj+1)} ∈ INE describe the
borders of a “hole” in the covered sequence. All nucleotides inside these bounds are Non-
Crossing, i.e. all EPMs which have outside-bounds within these regions satisfy the inside
condition. The set of all holes for an EPM E is given as follows.

4.2 Dynamic Programming Algorithm for LCS-ERP 49

Definition 4.2.1 (Holes of an Exact Pattern Match)
Given a exact pattern match E over two RNAs R1 = (S1, B1) and R2 = (S2, B2) with their
inside-bounds INE . Then, the set of holes with minimal size γ for this EPM is defined as:

HOLESE =
{ 〈

(l1, r1), (l2, r2)
〉
| r1 ≥ l1 + γ ∧ r2 ≥ l2 + γ ∧ ri, li ∈ Vi

}
for that hold:

∀
〈
(l1, r1), (l2, r2)

〉
∈ HOLESE : ∃

〈
(l1 − 1, r1 + 1), (l2 − 1, r2 + 1)

〉
∈ INE .

Clearly, a hole
〈
(l1, r1), (l2, r2)

〉
∈ HOLESE defines a substring S1[l1, r1] in the first RNA and

a substring S2[l2, r2] in the second RNA. With γ we refer to the same size as indicated by
E1,2

γ . This is important, as γ should denote the minimal size of an EPM included in E1,2
γ . For

example, consider a set which comprises only EPMs with minimal size γ = 4 and a specific
EPM with an inside-bound that encloses three nucleotides. The resulting hole needs not to
be considered, because there exists no EPM which fits into this hole. The same holds for
holes of size one in the case of the complete set E1,2

γ .

Further we need a scheme that treats each E ∈ E1,2
γ at a helpful position. Here we can

benefit from the properties of E1,2
γ . For any pair (r, s) ∈ V1 × V2 of nucleotide positions,

there exists exactly one E or there exists none. The Non-Crossing demand is achieved
with the correct usage of the different bounds as motivated above. Any E is handled only
one time at its maximal sequence position, given by its right-outside-bound RIGHTE . The
score for E is clearly composed of the score before E , given at the position LEFTE − 1, plus
the size of E itself, denoted by the function ω, plus possible scores of inside-bounds, given
recursively by the computation of HOLESE .

This leads to the following recursion formula for any 1 ≤ i < j ≤ |S1| and 1 ≤ k < l ≤ |S2|:

D(i, j, k, l) = max



D(i, j − 1, k, l)
D(i, j, k, l − 1)
D(i, i′ − 1, k, k′ − 1) + ω(E) +

∑
h∈HOLESE

Dh

if ∃E ∈ E1,2
γ with RIGHTE = (j, l), LEFTE = (i′, k′),

i′ > i, k′ > k

(4.1)

The first two cases indicate the best found LCS-ERP for the subsequences S1[i, j − 1] and
S2[k, l − 1]. The third case indicate a matched EPM, i.e. there is an exact pattern match
E in E1,2

γ with its right end RIGHTE = (j, l) in both RNAs. The function ω(E) denotes the
score for the EPM itself and is clearly the size |E|. Furthermore we add the score for each
enclosed substructure. For any existing hole h ∈ HOLESE we access a submatrix Dh from
D as follows:

Dh = D(l1, r1, l2, r2) with h =
〈
(l1, r1), (l2, r2)

〉
(4.2)

This calculates recursively the best score for a given hole h from position l1 to position r1

in S1 and from position l2 to position r2 in S2. Therefore, the score ω(E) +
∑

h∈HOLESE
Dh

4.2 Dynamic Programming Algorithm for LCS-ERP 50

denotes the total score of E . At last, this score is combined with the already computed score
D(i, i′−1, k, k′−1) before the left-outside-bounds, given by LEFTE = (i′, k′), and is saved at
the entry D(i, j, k, l), given by the right-outside-bounds RIGHTE = (j, l). Figure 4.1 shows
an example for the case of an EPM with two holes.

Figure 4.1: The score composition for an EPM E with two holes and right-outside-
bounds RIGHTE = (j, l). The score ω(E) is combined with the score before E and the
score inside E . A hole h =

〈
(l1, r1), (l2, r2)

〉
is fixed by the inside-bounds (not shown).

The score for the global best LCS-ERP can be calculated from D(1, |S1|, 1, |S2|). With a
traceback the sequence of EPMs can be determined. The matrix D is initialized with zero
values.

Improved Recursion Formula

From the recursion formula 4.1 one can see that the left ends for the subsequences are fixed to
the first position in both sequences. Only the recursion for a hole can start at an arbitrary
position (l1, l2) in both sequences, determined by the inside-bounds. The question arise,
whether we can order all holes in a way such that all necessary matrix entries are already
computed if an EPM with holes is considered. If this is possible, we can omit the recursion
for each hole in the general formula 4.1.

This goal is achieved with an ordering of all holes according to their size in one RNA for
a given set E1,2

γ . Although we cannot improve the overall running time, we can improve
the space complexity. With such an ordering it is possible to reduce the recursion to a two
dimensional version. We define a partial ordering on holes in one RNA as follows:

Definition 4.2.2 (�HOLES)
Given a set E1,2

γ of exact pattern matches over two RNAs R1 = (S1, B1) and R2 = (S2, B2).
Further let hi =

〈
(l1i , r

1
i), (l

2
i , r

2
i)

〉
∈ HOLESEi and hj = 〈(l1j , r1j), (l2j , r2j)〉 ∈ HOLESEj two

holes for any two Ei, Ej ∈ E1,2
γ . Then we can define a partial ordering hi �HOLES1 hj in R1

if and only if hi is smaller than hj or of equal size in R1, i.e.

hi �HOLES1 hj ⇐⇒ (r1i − l1i) ≤ (r1j − l1j)

Now we can order all holes in one RNA according to their size. Starting the recursion with
the smallest holes, for case three in formula 4.1 it is only necessary to consider the score of
the EPM itself, i.e. ω(E). Any EPM with its right and left outside-bounds inside this hole
cannot contain a hole not computed because all smaller holes are already treated. The best
score for the hole is finally added to the EPM to which the hole belongs. This implies that

4.2 Dynamic Programming Algorithm for LCS-ERP 51

for an EPM the overall score SE already exists if it is considered during a recursion from a
larger hole. The new two dimensional recursion scheme for any 1 ≤ j ≤ (r1 − l1 + 1) and
1 ≤ l ≤ (r2 − l2 + 1) for a hole with h =

〈
(l1, r1), (l2, r2)

〉
is given as follows.

SE = ω(E) +
∑

h∈HOLESE

D(r1, r2) with h =
〈
(l1, r1), (l2, r2)

〉
(4.3)

D(j, l) = max


D(j − 1, l)
D(j, l − 1)
D(i− 1, k − 1) + SE ,

if ∃E ∈ E1,2
γ with RIGHTE = (j, l), LEFTE = (i, k), i ≥ 1, k ≥ 1

(4.4)

Note that i, j, k, l denote relative hole positions. They need to be transformed into global
positions for the access of exact pattern matches from E1,2

γ . Formula 4.3 and 4.4 are valid if it
is guaranteed that the holes are computed according the ordering �HOLES. This ensures that
for each accessed hole h the overall score SE for any E contained in D(r1, r2) is completely
determined. Thus, we need only a two-dimensional matrix to compute the score D(j, l) of
each hole. The space complexity of recursion formula 4.4 is therefore only O(nm).

Algorithm and Implementation

Algorithmically, we need a precomputing of all existing holes. The pseudocode is given
below. The algorithm 4.1 (precompute-holes) iterates through all holes from the smallest
to the largest for a given set E1,2

γ . The function compute-hole-D given in algorithm 4.2
represents the recursion according to formula 4.4. Note that the given pseudocode iterates
directly over global positions instead of relative hole positions. For the sake of clarity, we do
not show the data structure to access each EPM by its right-outside-bounds as well as the set
E1,2

γ itself. The function scoreEPM(E) gives the overall score SE for each E ∈ E1,2
γ . The data

structure HOLESET contains all holes and maintains moreover the ordering �HOLES. In our
implementation this is achieved with the data type multimap from the standard template
library for C++.

After the precomputing, the best score for the complete sequences can be obtained from
the calculation of D(|S1|, |S2|), i.e. treating the whole sequence as hole. With a standard
traceback technique through this filled matrix, the set E1,2

LCS can be generated which denotes
the LCS-ERP. Results and examples which we produced with our implementation are given
in chapter 6. For a discussion of the problem LCS-ERP see section 6.4.

4.3 Correctness and Complexity 52

Algorithm 4.1: precompute-holes

Data: HOLESET�HOLES
= {h | h =

〈
(l1, r1), (l2, r2)

〉
∈ HOLESE , ∀E ∈ E1,2

γ }

Output: scoreEPM(E), ∀E ∈ E1,2
γ

forall E ∈ E1,2
γ do scoreEPM(E) = |E|;

forall hE ∈ HOLESET do
scoreHole = compute-hole-D([l1hE . . . r

1
hE

], [l2hE . . . r
2
hE

]);
scoreEPM(E) = scoreEPM(E) + scoreHole;

end

Algorithm 4.2: compute-hole-D

Function compute-hole-D([l1 . . . r1], [l2 . . . r2])

Data: Set E1,2
γ

Init: D[l1 − 1 . . . r1][l2 − 1 . . . r2] = 0;

for j = l1 to r1 do
for l = l2 to r2 do

if ∃ E ∈ E1,2
γ with RIGHTE = (j, l)∧ LEFTE = (i′, k′)∧ (i′ > l1)∧ (k′ > l2) then

score E = D[i′ − 1][k′ − 1] + scoreEPM(E);
else score E = 0;

D[j][l] = max {score E , D[j − 1][l], D[j][l − 1]};
end

end
return D[r1][r2];

4.3 Correctness and Complexity

Here we show that both recursion schemes give a correct solution for the problem LCS-ERP
from definition 4.1.1. Suppose a set E1,2

γ of several overlapping and crossing EPMs. First, we
consider that there exists no holes at all. The left indices i, k therefore are fixed in formula
4.1 and can be set to one, i.e. we consider a matrix D(j, l) similar to formula 4.4.

Proposition 4.3.1
Given a set E1,2

γ of exact pattern matches over two RNAs R1 = (S1, B1) and R2 = (S2, B2).
Further suppose ∀Ei ∈ E1,2

γ : HOLESEi = ∅. Then the entry D(j, l) contains the length
of the LCS-ERP for the subsequences S1[1, j] and S2[1, l], if each entry is computed from
the maximum of D(j − 1, l), D(j, l − 1) or D(i′ − 1, k′ − 1) + ω(E), with LEFTE = (i′, k′),
RIGHTE = (j, l).

Proof. For any (j, l) there exists exactly one E ∈ E1,2
γ . We reduce from the left, i.e. sup-

pose the leftmost Em for the subsequences S1[1, j] and S2[1, l] with the left-outside-bounds
LEFTEm = (i′m, k

′
m) and the right-outside-bounds RIGHTEm = (j′m, l

′
m). The score before is

4.3 Correctness and Complexity 53

D(i′m − 1, k′m − 1) = 0 and the score at D(j′m, l
′
m) is therefore |Em|. This is the maximal

possible length of the LCS-ERP for the subsequences S1[1, j′m] and S2[1, l′m]. Clearly, a single
EPM holds the Non-Crossing condition.

Any following entries are filled with the maximum of D(j− 1, l), D(j, l− 1) or D(i′− 1, k′−
1) + ω(En), i.e. there is an EPM En with LEFTEn = (i′n, k

′
n), RIGHTEn = (j′n, l

′
n). The score

at D(i′n − 1, k′n − 1) contains the maximal LCS-ERP before En and is now extended with the
score from the Non-Crossing EPM En. If there is no EPM for a pair of positions (j, l), the
cases D(j− 1, l), D(j, l− 1) simply transfer the score from the position before which ensures
that any pair (j, l) contains a score of the maximal LCS-ERP.

Now we show that the solution is correct, if the set E1,2
γ contains holes, as well.

Proposition 4.3.2
Given a set E1,2

γ of exact pattern matches over two RNAs R1 = (S1, B1) and R2 = (S2, B2).
Then a hole for an EPM E is correctly computed with

∑
h∈HOLESE

D(l1, r1, l2, r2) or
∑

h∈HOLESE

D(r1, r2) with h =
〈
(l1, r1), (l2, r2)

〉
.

Proof. A hole h =
〈
(l1, r1), (l2, r2)

〉
is given with its indices for the corresponding subse-

quences S1[l1, r1] and S2[l2, r2]. The difference between formula 4.1 and 4.4 is only the point
when the submatrix of D is filled. Formula 4.1 recursively computes it for any found hole,
whereas in formula 4.4 it is assumed that each EPM with a hole is already computed if it is
treated.

The scheme for a hole h follows exactly the scheme without holes. The difference is that
a found EPM Eh with its right-outside-bounds have to fit also with its left-outside bounds
LEFTEh

= (i′h, k
′
h) in the considered hole, i.e. i′h > l1 and k′h > l2 or i′h ≥ 1 and k′h ≥ 1.

Consequently, all treated EPMs satisfy the Non-Crossing condition relative to that hole,
because they lying completely inside a hole h. Therefore it is possible to add the score of a
hole to the score of the according EPM which contains hole h. In formula 4.4 this is achieved
with the defined ordering on holes �HOLES. If the computation starts with the smallest hole,
all compatible EPMs during the computation of D(r1, r2) have a score inclusive their holes.

Thus, we have shown that the scores D(i, j, k, l) for recursion formula 4.1 and D(j, l) for
recursion formula 4.4 represent the length of a longest common subsequence of exact RNA
patterns.

Complexity Analysis

Here we give an analysis of the improved version according to formula 4.4 and 4.3. The
input for the algorithm are two nested RNAs R1 = (S1, B1) and R2 = (S2, B2) and a given
set E1,2

γ . The lengths of the sequences are |S1| = n, |S2| = m.

The time and space complexity depends primarily on the number of exact pattern matches
and the number of holes. We emphasized already the uniqueness of each single partial
matching (r, s) ∈ M ⊆ V1 × V2 in the set E1,2

γ . Hence we can give the following two
statements:

4.3 Correctness and Complexity 54

• The set E1,2
γ contain maximal n·m different EPMs and we can estimate this with O(nm).

• The set E1,2
γ contain maximal n ·m different holes according to definition 4.2.1. This

applies for a complexity of O(nm) as well.

The first statement is given according to section 3.2. The second statement is proven next.
In algorithm 4.1 we indicate the ordered set of all holes with HOLESET. We use this term
in the same way for the following proof.

Proposition 4.3.3
Given a set E1,2

γ and the ordered set HOLESET of all holes contained in E1,2
γ . Then there are

maximal (n ·m) different holes in HOLESET, i.e. it can be estimated with O(nm).

Proof. Given two nested RNAs R1 and R2, there are maximal |B1| ≤ n
2 base pairs in B1 and

maximal |B2| ≤ m
2 base pairs in B2. An EPM can contain a hole if and only if it contains

at least one base pair to hold the matching pattern condition. As the set E1,2
γ contains only

unique partial matchings, also any base pair part of a hole in the first RNA is matched by
at most one base pair part of a hole in the other RNA. This means, if an EPM contains a
hole and therefore a base pair matching, this base pair cannot be matched in the same way
from another EPM. Thus, there are at most n ·m holes in HOLESET from a set E1,2

γ .

With that proof we can estimate the running time for the given recursion scheme 4.4 as
follows. Each hole from HOLESET is treated one time. To obtain a score for a hole, we fill a
two dimensional matrix. The size is determined by the hole and is at most |S1[l1, r1]| ≤ |S1| =
n and |S2[l2, r2]| ≤ |S2| = m. Therefore, the time to determine the score of a single hole is
O(nm) and consequently for all holes we need O(n2m2) time. The overall score is obtained
from D(|S1|, |S2|) with all EPM scores precomputed. With a traceback the underlying LCS-
ERP or the set E1,2

LCS can be obtained in O(nm). For each hole part of the LCS-ERP a matrix
has to be re-filled to find the best trace of EPMs.

The space complexity of the improved version can be estimated with only O(nm). After the
computation of each hole, the score is added to the overall score for the corresponding EPM
and there is no need to maintain the hole matrix anymore. This is the difference to the first
version given in formula 4.1. There we have to maintain a O(n2m2) matrix. Clearly, we
have to save the score for each EPM and the set E1,2

γ itself. However, this not exceeds the
previous space complexity of O(nm).

Together with the fact from section 3.4 that we can determine the set E1,2
γ in O(nm), we

can summarize the complexity to solve the problem LCS-ERP with the following theorem.

Theorem 4.3.1 (LCS-ERP)
Given two nested RNAs R1 = (S1, B1) and R2 = (S2, B2). The problem to determine the
longest common subsequence of exact RNA patterns (LCS-ERP) is solvable in O(n2m2) time
and O(nm) space.

Chapter 5

A Local Clustering Strategy for Exact Pattern
Matches

Chapter 4 deals with a global method for exact pattern matches. In this chapter, we describe
our approach for local pairwise comparison of nested RNA secondary structures on the
basis of exact pattern matches. Local comparison might better exhibit active sites which
are responsible for biological function. Further one can find stable substructures in the
considered secondary structures.

In section 5.1, we define a (local) cluster of EPMs via a distance constraint. Clusters are con-
structed from EPMs and this constraint in form of a threshold value describes the maximally
allowed distance between different exact pattern matches. In section 5.2, we define different
distance functions. To benefit from the fast detection of EPMs in O(nm), we develop a fast
clustering algorithm to find such clusters of exact pattern matches. Section 5.3 describes two
clustering strategies for this algorithm. Details of our implementation for these strategies
are presented in section 5.4. We end with a complexity estimation and define parameters to
achieve a fast detection of clusters.

5.1 Local Clusters of Exact Pattern Matches

The local alignment methods mentioned in section 2.3 provide more compact results for less
related sequences, because a local alignment do not have to span over the entire sequence.
Mostly, this is achieved with setting negative scores to zero and therefore a “new“ alignment
could start at any other point. In relation to theses methods, we want to find local arrange-
ments of EPMs. Following the global method from the last chapter, we want to discover
local subsets of EPMs. Clearly, a found subset should be a plain mapping as well as an
arc-preserving subsequence. In addition to a similar structural ordering, the identified EPMs
have to hold a distance constraint in both RNAs.

We define this constraint via a distance function δ, i.e. two neighbouring EPMs have a
distance less than a threshold value. An EPM above the threshold is not a neighbour and
therefore these two EPMs build no local arrangement of exact pattern matches. The usage
of a general distance function allows the definition of different functions, which makes the
approach flexible for different purposes. Further, two EPMs are only neighbors if they hold
the Non-Crossing condition from definition 3.3.1. The difficulties are how to measure the
distance and in which way we find fast a good local arrangement common to both RNAs.

5.2 Distance Methods 56

The usage of distances instead of gaps and the local view in principle applies more to the
domain of data classification and analysis. Therefore we speak of local clusters or simply
clusters for local arrangements of exact pattern matches.

Definition 5.1.1 (Cluster)
Given a set of exact pattern matches E1,2

γ over two RNAs R1 and R2 and a threshold value
τ . A Cluster is a set Cδ,τ ⊆ E1,2

γ of exact pattern matches for which hold:

1. ∀Ei Ej ∈ Cδ,τ : Ei and Ej are Non-Crossing in R1 and R2

2. ∀Ei ∃Ej ∈ Cδ,τ : δ(Ei, Ej) ≤ τ

The size of a cluster is equal to the number of matched nucleotides, i.e. |Cδ,τ | =
∑

E∈Cδ,τ |E|.
Further, the distance function δ(Ei, Ej) needs an explicit definition. Possible definitions are
given in the following section. For example, we define a distance function which uses the
number of nucleotides between two exact pattern matches.

5.2 Distance Methods

The following defined distance functions δ(Ei, Ej) are based on the number of nucleotides
between two exact pattern matches. The Non-Crossing condition is a precondition on all
clusters and we can make use of this for the different distance functions. If two exact pattern
matches are Crossing, then their distance is set to infinity. Further we have to treat the
fact that the distance between two EPMs is different in R1 and R2. Therefore we determine
in a first step the distance in each RNA separately and then we combine them in a second
step.

5.2.1 DISTANCE-SEQUENCE

A simple and intuitive distance measure is based on the minimal length of the primary
structure between two neighbouring exact pattern matches. To determine the distance, we
make use of the matching bound definition 3.3.3. The following definition is given for a single
RNA. For example, for RNA R1 we define δ 1

SEQ as follows.

δ 1
SEQ(Ei, Ej) =



∞, Ei G Ej
r − RIGHT1

Ej
, Ei b Ej , ∃ (l, r) ∈ IN1

Ei
:

l < LEFTEj ∧ RIGHTEj < r

LEFT1
Ej
− RIGHT1

Ei
, Ei
 Ej

(5.1)

The distance function δ 1
SEQ for a cluster is given as the length of the sequence between

the right-outside-bounds and the left-outside-bounds, if the considered EPMs satisfy the
before/after condition for Non-Crossing (third case). In the case of nested EPMs, the dis-
tance function for a cluster is defined as the length of the sequence between the inside-bound

5.2 Distance Methods 57

Figure 5.1: Illustration for distance function δ 1
SEQ. If Ej′ is before Ei, then the distance

δ 1
SEQ(Ei, Ej′) is determined by the outside-bounds. If Ej is inside Ei, then δ 1

SEQ(Ei, Ej) is
determined between the inside-bound and the outside-bound.

and the right-outside-bound (second case). This is necessary because the later clustering
algorithm works from the left to the right over a given sequence.

Now we can combine the distances of each RNA to the distance function δSEQ which we call
DISTANCE-SEQUENCE.

δSEQ(Ei, Ej) = δ 1
SEQ(Ei, Ej) + δ 2

SEQ(Ei, Ej) (5.2)

With formula 5.2 we can calculate the distance between two arbitrary EPMs. To identify a
cluster with this distance function, a threshold value τ is needed. Here τ can be interpreted
as the maximal number of nucleotides allowed between two exact pattern matches.

For the clustering strategy we need a slightly different version of δSEQ which is better in
an algorithmic manner. We simply change that both distances have to be below a given
threshold τ . Then we write the distance function for a cluster as:

δSEQ1(Ei, Ej) =

{
TRUE, δ 1

SEQ(Ei, Ej) ≤ τ ∧ δ 2
SEQ(Ei, Ej) ≤ τ

FALSE, otherwise
(5.3)

If the length of the sequences are notably different, it is possible to use relative distances as
well as relative thresholds instead of absolute values.

5.2.2 DISTANCE-SEQUENCE-EQUAL

The distance function δSEQ1 handles all exact pattern matches within a given threshold equally.
Finding clusters with more similar distances, we can incorporate a constraint on the differ-
ences of the distances. Such a distance can be useful to detect motives in RNAs which need
a certain distance in their tertiary structure for functionality.

With the following distance function we define two EPMs as local, if they have similar
distances in both RNAs. For example, suppose a given threshold τ = 50 and two EPMs with
a distance δ 1

SEQ(Ei, Ej) = 5 and δ 2
SEQ(Ei, Ej) = 45. Then both EPMs can be combined with δSEQ1,

although the large difference of 40 nucleotides. An additional constraint could restrict the
allowed difference for example to 10 nucleotides. Look at figure 5.2 below for an illustration of
that distance function. We call such a distance function DISTANCE-SEQUENCE-EQUAL.

5.2 Distance Methods 58

δEQL(Ei, Ej) =

{
TRUE, δSEQ(Ei, Ej) ≤ τ ∧

∣∣ δ 1
SEQ(Ei, Ej)− δ 2

SEQ(Ei, Ej)
∣∣ ≤ ∆DT

FALSE, otherwise
(5.4)

The threshold τ is used here as the general threshold for the allowed distance of two EPMs.
In addition, the δEQL function needs a second parameter ∆DT which denotes the threshold
for the allowed differences between the distances in the first and second RNA.

Figure 5.2: Illustration for distance function δEQL. The grey shaded region denotes
the allowed difference between the distances δ 1

SEQ(Ei, Ej) and δ 2
SEQ(Ei, Ej), determined

by ∆DT. The black line denotes the distance δ 1
SEQ(Ei, Ej).

5.2.3 DISTANCE-STRUCTURE-SHORTESTPATH

In contrast to the distance functions above which are based on the sequence length between
two exact pattern matches, we want to define here a function which is based on the secondary
structure. Suppose two RNA structures and one of them has a large stem-loop inserted in
a common multi-loop. Then two exact pattern matches in the multi-loop with that hairpin
in between are not local with the above functions based on the primary sequence. However,
in a structural sense they are near if the hairpin is excluded. This means if one can “walk”
over hydrogen bonds and count the passed nucleotides in that way, the resulting distance
reflects better the given local structural properties of the RNA molecule. Figure 5.3 shows
such an example.

Figure 5.3: Illustration for distance function δPATH. The blue lines denote the shortest
paths between the indicated EPMs Ei and Ej . The distance is independent of the size
of the stem in the middle of R2.

According to our path definition 3.1.1, we therefore search for the minimal path between
two EPMs to determine their distance. We call this function DISTANCE-STRUCTURE-
SHORTESTPATH and is given for a single RNA as follows.

δ 1
PATH(Ei, Ej) = min

{
∞, Ei G Ej
SHORTEST-PATH1(Ei, Ej), Ei, Ej Non-Crossing

(5.5)

5.3 Clustering Strategies 59

The problem for an algorithm is the complexity of the path finding problem, denoted here
with the function SHORTEST-PATH. It depends on the structural elements of the RNAs. A
precomputation of the structural elements could be helpful, but still the path between two
arbitrary EPMs have to be determined separately. This probably exceeds the desired overall
complexity of an algorithm. With an inside-to-outside algorithm we are already capable
to access a specific structural path in one RNA in O(1). But it remains incomplete and
therefore the path finding problem needs further investigation.

5.3 Clustering Strategies

In this section we describe the algorithmic approach to find local clusters of exact pattern
matches. In contrast to the global case from chapter 4, no method is actually known to
find optimal local clusters of exact pattern matches. Methods like the LSSA-algorithm from
Backofen and Will [BW04] solves the related, but different local sequence-structure alignment
problem optimal. However, this approach with its time complexity of O(n2m2 max(n,m))
is not applicable to large RNA structures. We recall here again that the MCS algorithm
[SB07] described in section 3.4 determines the set E1,2

γ in only O(nm). This is fast and
opens its application to large RNA structures with even several thousands of nucleotides.
For such large RNAs the comparison is rather limited by finding the secondary structure
with methods like RNAfold [HFS+94]. Moreover, an optimal local method has probably a
complexity comparable to the global case. In the following we develop an algorithm which
finds arrangements of exact pattern matches in form of clusters within a reasonable and
scaleable time.

The Clustering Principle

Our approach follows a greedy strategy to find local clusters. In general, a greedy strategy
chooses at any point the most profitable solution. Here, in each clustering step the best
solution, i.e. the cluster with the largest size, is chosen. Consequently, we follow for the
local approach a strategy which maximizes the size of a cluster |Cδ,τ |, i.e. the number of
matching nucleotides.

The basic idea is to maintain a set CANDSET of not fully extended clusters. Then for
each new considered EPM a set of clusters which hold the distance and Non-Crossing
constraints, called candidate clusters, is determined. In order to expand a candidate cluster
with a new EPM according to a chosen strategy, the best candidate cluster is removed
from CANDSET. Next, the solution is built and finally it is inserted in CANDSET. Thus,
each clustering step consists of three stages, independent from the chosen distance function
and clustering strategy. For any exact pattern match E ∈ E1,2

γ , the following steps are
processed.

5.3 Clustering Strategies 60

1. Determine all candidate clusters Cδ,τ
cand for E from CANDSET,

i.e. ∃E ′ ∈ Cδ,τ
cand : δ(E , E ′) ≤ τ .

2. Find the Non-Crossing cluster Cδ,τ
max with max(|Cδ,τ

cand|), remove Cδ,τ
max from

CANDSET and build solution from Cδ,τ
max with E according to chosen strategy.

3. Add the solution to the pool of all candidates in CANDSET.

The first step comprises the necessary conditions to build a valid cluster according to defini-
tion 5.1.1. A candidate denotes a cluster which is already found and satisfying the distance
constraint. The third step is necessary to increase the pool of candidate clusters. Hence,
alternative strategies can be build only around step two. In the following we define two
clustering strategies, differing in the way the solution is built. Both strategies use as “seed”
a cluster which comprises only a single EPM.

CLUSTER-MAX-1

The scheme for that strategy is as follows. Suppose a currently treated exact pattern match
E and further a candidate cluster Cδ,τ

max with maximal size |Cδ,τ
max|. First, the cluster |Cδ,τ

max| is
removed from CANDSET, i.e CANDSET \ Cδ,τ

max. Then we build the solution with:

SMAX1 =
{
Cδ,τ

max ∪ {E}
}

(5.6)

This means, that the best candidate cluster Cδ,τ
max is extended with the current EPM E and the

former candidate cluster is replaced. With other words, any existing cluster is clustered only
once. This imply that a cluster is not independent from the ordering of the treated EPMs.
Finally, the solution is inserted in the set of candidate clusters, i.e. CANDSET ∪ SMAX1.

CLUSTER-MAX-2

This strategy is similar to the first clustering strategy except that the candidate cluster
remains a candidate. Therefore, the solution for step two of the clustering principle comprise
two clusters. The new cluster is build from the candidate and the current treated exact
pattern match. Formally, this is as follows:

SMAX2 =
{
Cδ,τ

max ∪ {E}, Cδ,τ
max

}
(5.7)

This clustering strategy can be interpreted as a compensation strategy. A candidate cluster
can be combined with different exact pattern matches as long as the candidate is within
the threshold for the distance function. Here a cluster is less dependent from the ordering
of the treated EPMs. Finally, the solution is inserted in the set of candidate clusters, i.e.
CANDSET ∪ SMAX2

5.4 The Pairwise Pattern Clustering Algorithm 61

5.4 The Pairwise Pattern Clustering Algorithm

In the following we realize a fast clustering strategy of the introduced clustering principle.
The algorithm proceeds an inside-to-outside scheme in general with all loop regions treated
first. This means that a base pair (i, i′) ∈ B is only processed, if all base pairs (j, j′) ∈ B
with i < j < j′ < i′ are processed before.

To achieve a clustering method which preserves the fast detection of the set E1,2
γ , we iterate

only through one RNA and handle each nucleotide only once. A preprocessing step is needed
to modify and order the given exact pattern matches for later clustering. In the following
we describe the preprocessing step and the clustering step of our algorithm in detail. By
convention, we always process the first RNA and determine all dependencies within the
second RNA simultaneously.

5.4.1 Preprocessing

Matching Closures: This step determines the matching closure E according to definition
3.3.4 for all exact pattern matches E ∈ E1,2

γ . We denote the set of all matching closures as
E1,2

γ and all following operations like the determination of the matching bounds or the test
for Non-Crossing are based on this set. The usage of the matching closure is necessary
to ensure that the ordering according to the right-outside-bound in one RNA excludes all
cases of overlapping and crossing EPMs correctly. The matching closure enforces that all
right-outside-bound positions are either unbound or right-paired. This allows in stem re-
gions the algorithmic checking of Non-Crossing with one specific sequence position. In
consequence of matching closures, specific pairs of EPMs are treated as Crossing, although
the underlying matchings are Non-Crossing. Figure 5.4 shows such an example.

Figure 5.4: An arrangement of two EPMs which do not satisfy Non-Crossing,
if the check is based on matching closures. The problem occurs in R1. Here the
inside-bounds of E1 and the outside-bounds of E2 covering the same base pair (i, i′).

Ordering: Further, an ordering for all E ∈ E1,2
γ along the primary structure of the first

RNA is needed. This ensures that each EPM is treated only once in the clustering algorithm.
Similar to the LCS-ERP algorithm, we order all EPMs E ∈ E1,2

γ according to the right-outside-
bounds. Due to the fact that the input is ordered along R1, we separate all EPMs by the
RIGHT1

E value. Clearly, this position is not assigned to a unique EPM. The resulting set of
EPMs assigned to nucleotide position k is denoted as

EPMORDERk = { E | RIGHT1
E = k } ⊆ E1,2

γ .

5.4 The Pairwise Pattern Clustering Algorithm 62

5.4.2 Clustering

In order to realize the introduced clustering strategies from section 5.3, a set of candidate
clusters for each exact pattern match is needed. We call this set CANDSET and it is best
composed with an inside-to-outside scheme, because each innermost substructure contains
only a small number of EPMs. This reduces the number of possible candidate clusters in
general and the best chosen candidate cluster is propably a nearly optimal clusters. In the
following we assume a given ordering EPMORDERk for any position k with 1 ≤ k ≤ |S1|.

The outline for this section is as follows. At first, we describe the data structure for the set
of candidate clusters. Next, we explain in which way a single EPM with its different shapes
is clustered. Then we give details on the handling of loops and finally we give the overall
algorithm using pseudocode notation.

Data Structure for the Set of Candidate Clusters

The set of candidate clusters for each nucleotide position k is maintained in the set CANDSETk.
This set contains all clusters Cδ,τ ∈ CANDSETk ⊆ CANDSET, which are within the given
threshold τ from sequence position k for the chosen distance function δ in R1. As we pro-
cess all positions k from inside to outside, any new inner loop starts with an empty set
CANDSETk. Hence, if a nucleotide S[k] is part of a base pair (k′, k) ∈ B, CANDSETk con-
tains only clusters with EPMs inside from position k. Second, if S[k] is a nucleotide within
a loop, all EPMs from clusters in CANDSETk have outside-bounds between the beginning of
the loop and position k. Note that we only treat right-paired nucleotides in consequence of
matching closures. Therefore, any left-paired nucleotide k contains an empty set CANDSETk.
In order to have all clusters within threshold τ in CANDSETk, each CANDSETk needs an
update from a position k′ inside or before k. The update inserts all clusters from CANDSETk′

in CANDSETk which still hold the distance constraint. During the algorithm, we then can
simply iterate through each CANDSETk to access all candidates for further treatment.

Clustering of Different Shapes of Matchings

Depending on the shape, an exact pattern match has to be tested against different and
moreover independent sets of candidate clusters. Due to the inside-to-outside scheme, all
these candidate clusters are lying inside or before the treated EPM. The necessary positions
k to access CANDSETk are determined by the inside-bounds and outside-bounds and are
identified as follows.

First, suppose an EPM E with a non empty set of inside bounds IN1
E . For any (ri, ri+1) ∈ IN1

E ,
the set CANDSETk with k = ri+1−1 contains the candidate clusters inside the treated inside-
bound (ri, ri+1) of E in R1. Clearly, all candidate clusters have to be tested for the cluster
constraints in R2, but this can be reduced to a single test between E and a specific EPM
from the candidate cluster.

The set of candidate clusters before E depends on the structure type of the nucleotide before
the left-outside-bound at position LEFT1

E − 1. If the nucleotide S1[LEFT1
E − 1] is unpaired or

right-paired (!), then the set CANDSETk with k = LEFT1
E − 1 contains all candidate clusters

5.4 The Pairwise Pattern Clustering Algorithm 63

before E but within the current inner loop in R1. Similarly to the case above, each candidate
cluster has to be tested for the cluster constraints in R2. If the nucleotide S1[LEFT1

E − 1] is
left-paired (!), we cannot cluster anything, because E is inside or at the end of a stem.

These given schemes for the handling of EPMs from EPMORDERk are combined in function
clusterEPM. For the algorithm we denote the set of positions k with nonempty candidate
cluster sets for an EPM E with

CANDPOSE = {k | CANDSETk contains candidate clusters for E}.

In figure 5.5 all position from CANDPOSE for the shown EPM are red colored. Suppose a
base pair between S[i− 1] and the last U nucleotide. Then position i− 1 is not contained in
CANDPOSE .

Figure 5.5: An exact pattern match E (green nucleotides) and positions which con-
tain candidate clusters. The positions CANDPOSE = {i − 1, rj+1 − 1, rk+1 − 1} are
red marked, necessary bounds are blue marked.

Clustering of Loops and Multi-Loops

According to the loop decomposition for an RNA secondary structure shown in figure 2.3 on
page 15, each loop region is limited by a closing base pair. We denote this base pair with
(r0, r′0). In the case of internal loops, bulges and multi-loops, there exist base pairs (ri, r′i)
with r0 < ri < r′i < r′0, which limit branching substructures.

Suppose a base pair (r0, r′0) which closes a loop. According to the used inside-to-outside
scheme, the loop region is traversed from the left to the right, i.e. from S1[r0 + 1] to
S[r′0 − 1]. If a base pair (ri, r′i) is found, this substructure is traversed first from inside to
outside and the loop-walk is continued afterwards. For such base pairs (ri, r′i) we need an
additional clustering operation which combines clusters inside base pair (ri, r′i) and clusters
produced between S1[r0 +1] and S1[ri−1]. If a position r′i is processed during the algorithm,
these clusters are already produced. Therefore we can simply add a clustering operation
between the sets CANDSETr′i

and CANDSETri−1. We call this function clusterSTEM and it
is invoked for all nucleotide positions r′i, if (ri, r′i) ∈ B is base pair in the described manner.

The function clusterSTEM combines clusters with clusters in a fixed manner. Each clus-
ter from CANDSETr′i

is combined with the best cluster, i.e. the largest cluster, from
CANDSETri−1. The best cluster remains a candidate cluster. Clearly, two combined clusters
have to fulfil the cluster constraints, i.e Non-Crossing and the distance threshold. With

5.4 The Pairwise Pattern Clustering Algorithm 64

a clever ordering of the EPMs part of a cluster, the last added EPM is either the most out-
side or the last before EPM. Therefore this check can be done in O(1) for each cluster from
CANDSETr′i

.

Figure 5.6 below illustrates the loop walk. The positions for clusterSTEM are red marked.
With this given scheme for loops, any loop closing base pair (r0, r′0) needs no special treat-
ment. All EPMs in EPMORDERr′0

are clustered with clusterEPM.

Figure 5.6: Clustering of a multi-loop closed by base pair (r0, r′0). The blue circled
base pairs delimit stem 1 and stem 2. For the red marked nucleotides the clusterSTEM
operation is applied. This function combines the green marked sets CANDSETr′

i−1

and CANDSETri−1. The loop-walk starts with an empty set CANDSETr0+1 = ∅ (blue
nucleotide).

Complete Algorithm

Now we can give the complete algorithm. We separate it into two parts: (1) For each
nucleotide position 1 ≤ k ≤ |S1| the function clusterEPM(k) clusters all exact pattern
matches found at position k, i.e in EPMORDERk. (2) The function clusterSTEM(r′) handles
base pairs (r, r′) which delimit a substructure within a loop.

Note that RNA R1 is processed from inside to outside with loop positions first. Further,
each loop starts with an empty set CANDSETk = ∅. Dangling ends of R1 are treated as loop
positions as well. The pseudocode for clusterEPM is given in algorithm 5.2 below.

clusterEPM(k) // 1 ≤ k ≤ |S1|

1. For all EPMs E ∈ EPMORDERk determine set CANDPOSE .

2. Find best cluster Cδ,τ
max for each k′ ∈ CANDPOSE , i.e. find best cluster from CANDSETk′ ,

for which {Cδ,τ
max ∪ {E}} is a valid cluster in R2.

3. Build solution SMAX for each E with Cδ,τ
max according to chosen strategy.

4. Insert solution in CANDSETk for each E , i.e. E ,CANDSETk ∪ SMAX.

5.4 The Pairwise Pattern Clustering Algorithm 65

During a loop walk, the following function clusterSTEM(r′) is applied to any position r′,
with (r, r′) ∈ B1 and (r, r′) delimits a substructure. The additional condition for the right-
outside-bound in step one is needed because all EPMs in EPMORDERr′ are already treated
during the clusterEPM function.

clusterSTEM(r, r′) // (r, r′) ∈ B1 is delimiting base pair

1. ∀Cδ,τ ∈ CANDSETr′ , ∀E ∈ Cδ,τ that hold RIGHT1
E < r′, find best cluster

Cδ,τ
max ∈ CANDSETr−1 for which {Cδ,τ ∪ Cδ,τ

max} is a valid cluster in R2.

2. Build solution SSTEM =
{
{Cδ,τ ∪ Cδ,τ

max}
}

for each Cδ,τ

3. Insert solution in CANDSETr′ for each Cδ,τ , i.e. CANDSETr′ ∪ SSTEM

Note that in both functions the verification of a valid cluster in R2 can be reduced to a single
Non-Crossing test with an appropriate data structure for the clusters itself. Additionally,
for each position k, the set CANDSETk has to be updated with all clusters from CANDSETk−1,
which are within threshold τ for the chosen distance function δ. Further, if k is right paired
and delimits a stem, the update is also necessary from the set CANDSETr−1, if (r, r′) is the
limiting bond in B1. At the end we have to insert all current EPMs in CANDSETk as seed
cluster. Seed clusters as generated as follows: ∀E ∈ EPMORDERk, Cδ,τ

SEED = {E}. Then each
seed cluster is inserted in CANDSET, i.e. CANDSETk ∪ {Cδ,τ

SEED}.

With a traceback through the set CANDSET, clusters with different properties can be re-
trieved. If only the best cluster should be obtained, no traceback is needed. In the pseu-
docode below the largest cluster from CANDSET is denoted as Cδ,τ

BEST. The other clusters can
be used for further analysis. For example, one can ask for the best cluster inside an arbitrary
base pair (i, i′). Such requests are supported by the data structure CANDSET.

Next we give the pseudocode for the clustering algorithm. We omit the function clusterSTEM
and give instead the main loop of the clustering algorithm.

5.4 The Pairwise Pattern Clustering Algorithm 66

Algorithm 5.1: clusterAll (main loop)

Output: cluster Cδ,τ
BEST, with |Cδ,τ

BEST| is maximal in CANDSET

Preprocessing(E1,2
γ , EPMORDER);

foreach 1 ≤ k ≤ |S1| from inside to outside in B1 do

CANDSETk = ∅;
clusterEPM(k);

if ∃(r, r′) ∈ B1 with k = r′ and (r, r′) limits a stem then

clusterStem(r, r′);
update CANDSETk from CANDSETr−1;

end
if STRUCT1(k − 1) 6= left-paired then update CANDSETk from CANDSETk−1

end
Traceback(CANDSET)

Algorithm 5.2: clusterEPM

Procedure clusterEPM(k)

forall Ej ∈ EPMORDERk do

Cδ,τ
S := {Ej}; SMAX = ∅;

forall k′ ∈ CANDPOSEj do

maxSize := 0;

forall Cδ,τ
i ∈ CANDSETk′ do

if Cδ,τ
i ∪ {Ej} is cluster in R2 and maxSize ≤ |Cδ,τ

i | then

maxSize :=|Cδ,τ
i |;

Cδ,τ
max = Cδ,τ

i ;
end

end
Cδ,τ

S := Cδ,τ
S ∪ C

δ,τ
max;

CANDSETk′ \ Cδ,τ
max;

if CLUSTER-MAX-2 then SMAX ∪ {Cδ,τ
max}

end
SMAX ∪ {Cδ,τ

S }; /* CLUSTER-MAX-1 and CLUSTER-MAX-2 */

CANDSETk := CANDSETk ∪ SMAX;

CANDSETk := CANDSETk ∪ {Cδ,τ
SEEDj
}; /* Cδ,τ

SEEDj
is seed cluster for Ej */

if |Cδ,τ
BEST| ≤ |Cδ,τ

S | then Cδ,τ
BEST := Cδ,τ

S ;
end

5.4 The Pairwise Pattern Clustering Algorithm 67

5.4.3 Complexity Analysis

In contrast to optimal algorithms, a worst case analysis is difficult for greedy techniques. Nev-
ertheless, an estimation of the average number of performed operation is possible. Therefore
we analyse the clustering strategy under specific parameters.

Due to the fact that the threshold value τ is fixed and determines how long a cluster is
“active” in the set CANDSET, this provides a basis for an analysis. In the following we
estimate the performed number of operations for the strategy CLUSTER-MAX-2 and distance
function δSEQ1.

For the analysis we suppose two given RNAs with their sequence lengths |S1| = n and
|S2| = m. Further there are p = |E1,2

γ | exact pattern matches given. Then we can assume
on average

aE =
p

n
(5.8)

exact pattern matches for each nucleotide k. This equals the average number of EPMs for
each EPMORDERk. Starting with a set CANDSET = ∅, there are at first aE clusters and
then for each following position the size increases with 2 · aE maximal. After τ steps, aE
clusters are out of the threshold and then with each following step there are 2 · aE clusters
out of the threshold. Consequently there are

candk = 2 · aE · (τ + 1) · c (5.9)

candidate clusters for each CANDSETk with some constant c for the secondary structure.
With an iteration over the first sequence, there are together 2 ·p ·(τ+1) ·c generated clusters.
Hence we have to test on average candk clusters to find for each exact pattern match the
best cluster. This reveals

candk · p = 2 · aE · p · (τ + 1) · c =
2 · p2 · (τ + 1) · c

n
(5.10)

as an estimation of the needed overall operations. Note that each clusterSTEM operation
produces some c · candk additional clusters for some positions. Further the update of each
CANDSETk needs on average candk operations. We assume these factors included in the
constant c. The test for Non-Crossing in R2 can be done in O(1) for both clustering
operations.

For real applications it is interesting to determine the input parameters against an expected
average time complexity. For example, to perform not more than O(nm) operations, we can
estimate the size |E1,2

γ | and threshold τ with

τ̂ ≤ n2m

2 · P 2 · c
P̂ ≤

√
n2 ·m

2 · c · (τ + 1)
(5.11)

5.4 The Pairwise Pattern Clustering Algorithm 68

The correctness for the clustering algorithm follows from the fact that each cluster is build
up from a seed cluster with a single EPM. Any extension is only done with an EPM lying
outside or after, which satisfies the Non-Crossing condition. This holds as well for the
clusterSTEM operation. Further any EPM is clustered to a cluster from CANDSETk which
satisfies the distance condition. Thus, all clusters in CANDSET are clusters according to
definition 5.1.1.

Summarizing, the clustering algorithm is able to find clusters according to definition 5.1.1.
Experimental results for two pairs of RNAs are given in chapter 6.

Theorem 5.4.1 (Clustering Algorithm)
Given two nested RNAs R1 = (S1, B1) and R2 = (S2, B2) with n = |S1|, m = |S2|, n ≤
m. Further a set of exact pattern matches E1,2

γ with p = |E1,2
γ |. Under a given distance

threshold τ and a distance function δ, the proposed clustering algorithm determines correct a
maximal cluster Cδ,τ

MAX of exact pattern matches for a chosen clustering strategy. The number
of performed operation can be estimated with (2 · p2 · (τ + 1) · c)/n for some constant c.

Chapter 6

Results

On the basis of a predetermined set of exact pattern matches (EPMs), we have developed
two methods for pairwise comparison of RNA secondary structures. EPMs describe exact
sequential and structural similarities between two RNA secondary structures. However,
such a precomputed set contains both overlapping and crossing exact pattern matches and
approaches are needed to combine EPMs in a meaningful way.

The first method described in chapter 4 deals with the task to find the best global subset of
EPMs, i.e. the subset which forms a longest common subsequence. We call this problem LCS-
ERP and proposed an O(n2m2) time and O(nm) space dynamic programming algorithm to
solve it. This approach can be used to describe a global similarity between two RNAs. The
clustering strategy described in chapter 5 follows a more local approach to combine different
EPMs. Although our proposed strategy does not ensure optimal clusters, it is flexible enough
to find reasonable clusters in a reasonable time.

In the following we apply both methods to two Hepatitis C virus internal ribosomal entry
site RNAs as well as to two bacterial 16S ribosomal RNAs to demonstrate their usability. For
a validation of our results, we compare them to RNA align and RNAforester. This chapter
starts with a description of our implementation as basis for the later given experimental
results.

6.1 Implementation of LCS-ERP and Clustering

In order to verify the functioning and usability, we implemented both the algorithm for
finding the longest common subsequence of exact RNA pattern and the clustering strategy.
This program was developed during this thesis and all below given results were obtained
from this program. Our C++ implementation combines all necessary steps in a modular
and object oriented way. The core of the program builds the object EPMensemble for the
storage of all overlapping and crossing exact pattern matches (EPMs). The necessary EPMs
are discovered according to the fast maximum common substructure algorithm from section
3.4 within the object EPMfinding. An implementation of this algorithm was obtained from
[SB07]. The algorithm for the problem LCS-ERP is implemented in the object EPMlcserp
and the clustering strategy is given in EPMclustering.

The input data can be provided in two ways. First, the two RNAs can be given with
their sequences and structures in standard dot-bracket format. If no secondary structure
is available, the program interacts with the Vienna RNA package library [HFS+94] and

6.2 Comparison to other Methods 70

calculates the minimum free energy (mfe) structure with RNAfold automatically [HFS+94].
The mfe-program uses the DP-algorithm from Zuker and Stiegler [ZS81] in combination with
the equilibrium partition function to calculate base pair binding probabilities from McCaskill
[McC90]. The thermodynamic parameters are taken from [MSZT99, WTK+94].

As it is an additional goal of this thesis to find a visualization for the exact pattern matches
itself and of course for the resulting sequences of EPMs, we developed two ways to achieve
this. First, it is possible to indicate a certain set of EPMs within a secondary structure. The
plot for the structure is obtained as well from the Vienna package with the interface for the
postscript output. An additional annotation script was implemented to highlight all EPMs
in the structure plot with a different color. See for example figure 6.1 for such an output.
Second, a dot plot is useful to illustrate pairwise EPMs within a single plot. Such an example
was already given in figure 3.5 which shows a complete set of EPMs for two RNAs. For the
ease of programming, we implemented this dot-plot view by means of a JAVA program. We
choose an structured XML file to exchange all necessary data between the programs.

The LCS-ERP algorithm is completely implemented and the clustering strategy is able to
calculate clusters with both clustering strategies CLUSTER-MAX-1 and CLUSTER-MAX-2.
As distance function we have already implemented δSEQ1 and δEQL. In order to determine
the set E1,2

γ with the given properties, one can provide for example the option -s# to indicate
the minimal size γ.

6.2 Comparison to other Methods

For the comparison of the results we have chosen RNA align and RNAforester. The first
method computes sequence structure alignments according to the general edit distance al-
gorithm described in section 2.4 [JLMZ02]. An implementation is available at the website
http://www.csd.uwo.ca/~bma/rna align/. For both applications we have computed the
alignment with the scoring scheme (ωm, ωd, ωam, ωb, ωa, ωr) = (1, 1, 1.8, 1.5, 1.75, 2).

Second, the RNAforester program from [HTGK03] is selected. This approach is build upon
the tree alignment algorithm for ordered trees from [JWZ95] and extends it to calculate forest
alignments. The time complexity is O(|F1|·|F2|·deg(F1)·deg(F2)·(deg(F1)+deg(F2))) where
|Fi| is the number of nodes in forest Fi and deg(Fi) is the degree of Fi. An implementation is
available together with the Vienna RNA package. As input parameter the algorithm needs
the scores for the different edit operations. We have chosen bm = 4 (base-match), br = −2
(base-mismatch), bd = −2 (base-deletion), pm = −4 (base pair replacement) and pd = −4
(base pair bond deletion) to compute the tree alignment for both applications.

It is important to note that a direct comparison with these methods is not possible due
to the fact that our approach contains only exact matchings, whereas alignments contain
additional gaps and mismatches. Nevertheless, a comparison is possible on the base of the
exact matchings. After the computation of the alignments with the mentioned methods,
we extract all positions with exact sequence structure matchings. The comparison is now
achieved via the intersections and differences with our approach. This enables further a
similar visualization technique for the alignments to our results. Clearly, a validation of
global alignments is only reasonable with the solution determined by LCS-ERP. Although

6.3 Application of LCS-ERP and Clustering 71

the clustering approach yields more local solutions, a comparison to local alignments is not
possible due to the nature of this approach. However, we can show that the obtained clusters
are reasonable as well. The comparison can be found at the end of section 6.3.1 and 6.3.2.

6.3 Application of LCS-ERP and Clustering

In the following we analyse both methods with two test cases. We have chosen at first two
RNAs with a length of around 400 nucleotides and the second pair comprise RNAs with
about 1550 nucleotides. In detail, the analysis was carried out with the following RNAs:

• App. 1: Two RNAs from different Hepatitis C viruses, which belong both to the
Rfam family HCV IRES for internal ribosomal entry sites (IRES) [GJMM+05]. IRES
elements binds to the 40S ribosomal subunit and initiate the translation of the viral
mRNA. Specific structural properties are necessary for their functioning. Between
different IRES elements one could expect several similarities. The first RNA comprises
bases 1-379 (GenBank code: AF165050) and the second comprises the bases 1-391
(GenBank code: D45172). The secondary structures were found via RNAfold.

• App. 2: Two 16S ribosomal RNAs from different organisms. The first RNA is from
Eschericia coli and is 1541 bases long (GenBank code: J01859). The second RNA is
from Dictyostelium discoideum and is 1551 bases long (GenBank code D16466). This
organism is an eukaryotic slime mould, whereas E. coli belongs to the prokaryotic
proteobacteria. This imply that both organisms evolved a long time separately. Nev-
ertheless one could expect significant similarities between both RNAs due to the fact
that the RNAs are ribosomal RNAs. The secondary structures were taken from the
Comparative RNA Web (CRW) site [CSS+02].

Note, that the first pair was chosen according to the paper from Siebert and Backofen [SB07].
All computations were carried out on a Pentium M with 1.4 GHz and 768Mb RAM.

6.3 Application of LCS-ERP and Clustering 72

6.3.1 Hepatitis C Virus IRES RNAs

For this case, the algorithm EPMfinding identified 3284 exact pattern matches in 0.44 sec-
onds. We use the complete set E1,2

γ as input for both pairwise comparison methods.

LCS-ERP applied to Hepatitis C Virus IRES RNA

Our LCS-ERP algorithm obtained a set of 26 exact pattern matches with a sequence of
175 nucleotides as longest common subsequence of exact RNA patterns. The LCS-ERP
corresponds to a sequence coverage of about 45%. The calculation was performed in 0.53
seconds.

The structures with the indicated LCS-ERP can be seen in figure 6.1 below. Although the
structures differ significantly in their shape, the algorithm detects several similar regions
between both structures. The numbers mark the five largest EPMs from the set E1,2

γ . These
are the same as the manually marked EPMs shown in figure C.1 in the appendix on page
104. The solution for LCS-ERP includes all of them automatically. An intersting detail is for
example the included small blue hairpin in the left structure between number three and four.
In the right RNA, this hairpin is opposite to the small yellow stem with number five, whereas
in the left structure this stem is situated in another region. Nevertheless, all indicated EPMs
are Non-Crossing in order to build the LCS-ERP.

Appl. 1 length #EPMs time

LCS-ERP 175 26 0.53s

6.3 Application of LCS-ERP and Clustering 73

Figure 6.1: LCS-ERP approach applied to two Hepatitis C virus internal ribosomal
entry sites (IRES) RNAs. The colored nucleotides represent the found LCS-ERP with
an overall length of 175 bases. Each EPM is shown in a different color. The numbers
indicate the five marked EPMs from figure C.1. GenBank codes: D45172 (left RNA),
AF165050 (right RNA)

6.3 Application of LCS-ERP and Clustering 74

Clustering applied to Hepatitis C Virus IRES RNAs

Due to the different clustering strategies and distance functions, the solutions for this ap-
proach depends on the chosen parameters. Therefore we show for the first application the
differences between the clustering strategies CLUSTER-MAX-1 and CLUSTER-MAX-2. For
comparability, we focus always on the best cluster Cδ,τ

max ∈ CANDSET, i.e. the cluster with
the largest size, in the analysis. Furthermore we change the threshold value τ for both
strategies in the same way. The threshold determines the maximal allowed distance between
exact pattern matches from a cluster. The used distance function is δSEQ1.

CLUSTER-MAX-1 vs. CLUSTER-MAX-2

To assess the general abilities as well as the differences of both strategies, we analyse this
test case with a series of different threshold values τ . The results are summarized in table
6.1. The corresponding structures for CLUSTER-MAX-1 are shown in figure 6.2 and B.4.
The structures for CLUSTER-MAX-2 can be found in figure 6.3 and B.5.

The data show that with an increasing search range by the threshold value τ the size of
the cluster Cδ,τ

max increases as well. For larger values than τ = 80 the largest clusters do
not change anymore in this case. Further one can see that both strategies are able to find
significant clusters. For example, the lower stem with the two large EPMs is matched for
nearly all τ values. For small values of τ , the best cluster is a proper local cluster for both
strategies, for larger τ the cluster spans nearly the whole structure.

By comparison of both clustering strategies differences in size and shape of the found clusters
emerge. For larger values of τ clearly CLUSTER-MAX-2 yield larger and better clusters.
Compare the pictures for τ = 80 in the figures 6.2 and 6.3. The large green matching part
of the best CLUSTER-MAX-2 solution is completely skipped in the best CLUSTER-MAX-
1 solution. An notable difference to the global solution occurs for CLUSTER-MAX-2 with
τ = 80. The small pink hairpin is not part of the global solution. From figure 6.3 one can
verify that this is an reasonable matching as well. A summary of all clustering parameters
as well as remarks to the running time can be found at the end of this chapter in section
6.3.3.

threshold τ size Cδ,τ
MAX1 time in s size Cδ,τ

MAX2 time in s

5 48 0.08 48 0.49
10 48 0.38 63 0.53
20 72 0.41 89 0.58
40 73 0.49 112 0.63
60 74 0.55 116 0.71
80 74 0.59 119 0.73

Table 6.1: Comparison of the clustering strategies CLUSTER-MAX-1 and CLUSTER-
MAX-2 for two Hepatitis C virus IRES RNAs. For larger thresholds τ , the cluster size
increases for both strategies. CLUSTER-MAX-2 reveal larger clusters in general. The
running times are comparable of both strategies.

6.3 Application of LCS-ERP and Clustering 75

τ = 5 τ = 20

τ = 40 τ = 80

Figure 6.2: Analysis for two Hepatitis C virus IRES RNAs with clustering strategy
CLUSTER-MAX-1. The pictures show the largest found cluster for the given distance
threshold τ value. Each EPM is shown in a different color. The arrows indicate regions
with large matchings. For example look at the figure for τ = 40. The arrow indicates
a large EPM which is not part of the other solutions.

6.3 Application of LCS-ERP and Clustering 76

τ = 5 τ = 10

τ = 40 τ = 80

Figure 6.3: Analysis for two Hepatitis C virus IRES RNAs with clustering strategy
CLUSTER-MAX-2. The pictures show the largest found cluster for the given distance
threshold τ value. Each EPM is shown in a different color. The arrows indicate regions
with interesting matchings. For example, look at the figure for τ = 10. The multi-loop
with the green and blue EPMs is matched completely different to the other solutions.
Second, look at the figure for τ = 80. The small red stem-loop is neither part of other
clusters nor part of the LCS-ERP solution.

6.3 Application of LCS-ERP and Clustering 77

Comparison with RNAforester and RNA align

For the comparison of our results to RNA align and RNAforester, we have first computed
the alignments for both Hepatitis C virus IRES RNAs. The obtained alignments for the
Hepatitis C virus IRES RNAs can be found in the appendix in figure A.1 for RNA align and
in figure A.3 for RNAforester. Next, we have extracted from these alignments all positions
with exact sequence structure matchings.

RNA align has found an alignment with 192 exact matchings in which 159 matchings intersect
with the solution from LCS-ERP. This means that about 9% of our matchings are different to
RNA align and the LCS-ERP solution covers 82.8% of the exact matchings from RNA align.
Figure 6.4 below shows the structural comparison between RNA align and LCS-ERP. One
can see that all important regions are blue colored which means identical exact matchings.
Further, there are several light blue colored nucleotides. These positions are part of exact
matchings in both methods, but the positions in the other RNA are different. With a sharp
view one can see that these are mainly shifted matchings in a loop region. The red colored
nucleotides indicate additional exact matchings found by RNA align. These are mainly single
nucleotides or regions which have to be excluded in LCS-ERP due to the Non-Crossing
constraint.

The RNAforester approach obtained an alignment with 128 exact matchings. In comparison
to our LCS-ERP approach, we cover the included exact matchings with a similar rate of
80.5%. However, our method finds much more exact matches in general. The structural
comparsion of our approach with the alignment found by RNAforester is shown in figure
A.2 in the appendix. One can see that our approach additionally matches one stem region
and several loop regions (green colored positions). Further there are only a few different
matches found by RNAforester. These are mainly single nucleotides, which cannot be part
of our solution.

The following table 6.2 summarizes the comparison. The comparison of the running times
yields good results for our approach as well. Please note that the running time for LCS-ERP
includes the time additionally needed to determine all exact pattern matches.

exact matches RNA align RNAforester LCS-ERP time

RNA align 192 - - 62s
RNAforester - 128 - 5.4s

LCS-ERP 159 (82.8%) 103 (80.5%) 175 0.97s

Table 6.2: Comparison of the number of found exact matchings by LCS-ERP and
two alignment methods. For this application, the LCS-ERP approach yields good
results in comparison to RNA align. Further, the LCS-ERP approach finds significantly
more exact matchings than RNAforester. The rate of about 80% identical matchings
supports the significance of the LCS-ERP method. The running time is faster as well.

6.3 Application of LCS-ERP and Clustering 78

Figure 6.4: Comparison between LCS-ERP and RNA align for two Hepatitis C virus
IRES RNAs. The blue colored nucleotides denote exact matches in both methods. The
light blue nucleotides denote matched nucleotides in both methods, but with different
positions in the other RNA. The green colored nucleotides occur only in LCS-ERP and
the red colored nucleotides occur only in RNA align. The picture shows that the LCS-
ERP solution is comparable to the solution from RNA align. GenBank codes: D45172
(left RNA), AF165050 (right RNA)

6.3 Application of LCS-ERP and Clustering 79

6.3.2 16S Ribosomal RNAs

For this case, the algorithm EPMfinding identified 50322 exact pattern matches in 1.21
seconds. We use the complete set E1,2

γ as input for both pairwise comparison methods.

LCS-ERP applied to two 16S ribosomal RNAs

The LCS-ERP algorithm obtained a set of 159 exact pattern matches with a sequence of 875
nucleotides as longest common subsequence of exact RNA patterns. This corresponds to a
sequence coverage of about 57%. The calculation was performed in 15.7 seconds.

The structures with the indicated LCS-ERP can be seen in figure 6.5. One could see that
our approach is capable to identify a large number of exact similarities between both RNAs.
See especially the high number of matched hairpins and internal loops. Due to the fact
that ribosomes are one of the best conserved functional units in living organisms, the overall
shape of both secondary structures is very similar. However, in detail one could recognize
differences in stem and loop regions. The matched regions could therefore reflect conserved
functional units. Unbound nucleotides within loops can clearly easier interact with other
molecules than paired nucleotides.

Appl. 2 length #EPMs time

LCS-ERP 875 159 15.7s

Clustering applied to 16S ribosomal RNAs

According to the first application, we show at first differences between the clustering strate-
gies CLUSTER-MAX-1 and CLUSTER-MAX-2. Further we focus here on differences between
the distance functions δSEQ1 and δEQL. For comparability, we use always the best cluster Cδ,τ

MAX

in the analysis. Due to the larger structures, we show in some cases only cutouts to illustrate
properties of the found clusters.

Clustering Strategies CLUSTER-MAX-1 and CLUSTER-MAX-2

First we have applied both clustering strategies in combination with distance function δSEQ1

for different distance threshold values τ . For the differences between both strategies we focus
on the case with τ = 50. The according structures with the highlighted cluster is shown in
figure B.1 for CLUSTER-MAX-1 and in B.2 for CLUSTER-MAX-2 in appendix B. Table 6.3
below summarizes the results.

First, one can see from figures B.1 and B.2 that both strategies are able to identify significant
similarities between both RNAs. Further the data exhibit similar differences between the
strategies like for the first application. CLUSTER-MAX-2 produces larger and better clusters
than CLUSTER-MAX-1. Besides their size, the cluster from CLUSTER-MAX-2 also contains
more exact pattern matches in a specific region. Compare for example the right branched
stem region for both strategies in figure B.1 and B.2. The EPMs are more dense and the

6.3 Application of LCS-ERP and Clustering 80

Figure 6.5: LCS-ERP approach applied two 16S ribosomal RNAs. The colored nu-
cleotides represent the found LCS-ERP with an overall length of 875 bases. Each exact
pattern match is shown in a different color. One could recognize several regions of sim-
ilarity. Although the structures vary, nearly all stems and hairpins can be found with
significant matches in both RNA. (a) E. coli 16S rRNA (J01859), (b) D. discoideum
16S rRNA (D16466)

6.3 Application of LCS-ERP and Clustering 81

cluster for CLUSTER-MAX-2 contains more matched hairpins in this region. CLUSTER-MAX-
1 tends to match base pairs only in the main branch and ignore small branched stems.

One can see from the table that higher distance thresholds τ not necessarily increase the
size of the largest found cluster. Further the table shows that the running time increases
with higher distance thresholds τ , but the running time of CLUSTER-MAX-1 scales better
than CLUSTER-MAX-2. For small τ values the differences are negligible which supports the
choice of CLUSTER-MAX-2 as the better strategy. Moreover, this strategy finds reasonable
clusters for small distance thresholds with a fast running time. See the already large cluster
obtained for τ = 10 shown in figure B.3.

threshold τ size Cδ,τ
CMAX1 time in s size Cδ,τ

CMAX2 time in s

10 155 4.22 403 4.92
50 183 9.24 555 12.64
100 286 18.63 483 29.41

Table 6.3: Comparison of the clustering strategies CLUSTER-MAX-1 and CLUSTER-
MAX-2 for two 16S rRNAs. CLUSTER-MAX-2 revels significant larger clusters than
CLUSTER-MAX-1. The running time of CLUSTER-MAX-2 is little slower than
CLUSTER-MAX-1.

Distance Functions δSEQ1 and δEQL

In section 5.2, we introduce the distance function δEQL as modification of δSEQ1 in order to
obtain more similar clusters. This function needs in addition to the distance threshold τ the
second parameter ∆DT as the threshold of the allowed distance differences for two EPMs in
the considered RNAs.

The analysis is carried out with clustering strategy CLUSTER-MAX-2 and a fixed distance
threshold τ = 10. The largest cluster with the unmodified distance function δSEQ1 is shown
in figure B.3 in the appendix. The cluster has a size of 403 matched nucleotides. One can
see that this cluster exhibits already a better locality in comparison to the cluster obtained
with τ = 50 shown in figure B.2. Further the cluster includes significant matches like the
green colored stem.

The application of distance function δEQL to this case reveals some differences. Figure 6.6
shows the results for two different values ∆DT. In both cases one can see some effects.
Especially for ∆DT = 2 the best found cluster decreases in size with the result of a more local
cluster. However, one can see from the picture that already for ∆DT = 5 the effect decreases
with higher thresholds.

The best cluster for ∆DT = 2 has a size of 172 nucleotides and the cluster for ∆DT = 5
comprises 368 nucleotides. This is a clear reduction in comparison to the best cluster for
δSEQ1 with τ = 10 and a size of 403 nucleotides.

6.3 Application of LCS-ERP and Clustering 82

τ = 10,∆DT = 2 τ = 10,∆DT = 5

τ = 10,∆DT = 2 τ = 10,∆DT = 5

Figure 6.6: Clustering with distance function δEQL. The pictures show the largest
found cluster for the given distance threshold τ value. ∆DT is the allowed difference
threshold. In comparison to δSEQ1, the clusters are more local. For smaller values of
∆DT the effect is higher than for larger values. (a-1,2) E. coli 16S rRNA (J01859),
(b-1,2) D. discoideum 16S rRNA

∆DT size Cδ,τ
CMAX2 time in s

2 172 4.2
5 368 4.8

Table 6.4: Results for two 16S rRNAs with distance function δEQL for τ = 10 and two
different values for ∆DT. The best found clusters for ∆DT = 2 is smaller, but exhibits
a better locality in comparison to ∆DT = 5 and to δSEQ1 with τ = 10.

6.3 Application of LCS-ERP and Clustering 83

Comparison with RNAforester and RNA align

Similar to the first application, we have first computed the alignments for both 16S rRNAs.
The obtained alignment for RNA align can be found in figure A.5 and for RNAforester in
figure A.6 in the appendix. Next we have extracted from these alignments all positions with
exact sequence structure matchings.

The alignment from RNA align contains 861 exact sequence structure matchings. In com-
parison, our approach obtained 875 exact matchings and of these are 688 or 79.9% equal
to the alignment. In contrast to the first application, our method finds in fact some more
matchings than RNA align. The structural comparison of both methods is shown in figure
A.4 in the appendix. The blue colored nucleotides show that our method conforms very well
with the alignment. In addition, there are about 70 nucleotides in both structures which are
covered by both methods, but mapped only to different positions.

The RNAforester approach obtained an alignment with 847 exact matchings. In comparison
to our LCS-ERP approach, we cover the included exact matchings with a rate of 82.6% (700).
Similar to the first application, our method finds several more exact matches in general. The
structural comparsion of our approach with the alignment found by RNAforester is shown
in figure 6.7. It shows that large parts are matched similar by both methods (blue colored
nucleotides). Further there are 61 nucleotides in the E. coli RNA and 49 nucleotides in the
D. discoideum RNA which are matched to different positions. These are often only shifted
matchings. The number of unique matchings for the LCS-ERP methods is as well higher than
for RNAforester.

The following table 6.5 summarizes the comparison. For the used 16S rRNA we achieved a
slight better result with RNAforester. The comparison of the running times yields really
good results for our approach as well and emphasizes its application to large RNAs. Please
note that the running time for LCS-ERP includes the time to determine all exact pattern
matches. Due to the high memory usage of the RNA align implementation for long RNA
sequences, we used a compute server for this computation. Nevertheless, the computation
needs more than 1.5 hours.

exact matches RNA align RNAforester LCS-ERP time

RNA align 861 - - 1h 35m∗

RNAforester - 847 - 7m 25s
LCS-ERP 688 (79.9%) 700 (82.6%) 875 16.9s

Table 6.5: Comparison of the number of exact matches found by LCS-ERP and
two alignment methods. For this application, the LCS-ERP approach yields good
results in comparison to both methods. Further, the LCS-ERP approach finds the
most number of exact matchings. The rate of about 80% identical matchings supports
the significance of the LCS-ERP method. The running time is remarkable faster than
both methods. ∗AMD Opteron 275/875, 2.2 GHz, 20 Gb RAM

6.3 Application of LCS-ERP and Clustering 84

Figure 6.7: Comparison between LCS-ERP and RNAforester for two 16S rRNAs.
The blue colored nucleotides (700) are exact matches in both methods. The light blue
nucleotides denote matched nucleotides by both methods but with different positions
in the other RNA (61 in (a), 49 in (b)). The green colored nucleotides occur only
in LCS-ERP and the red colored nucleotides occur only in RNAforester. The picture
shows that the LCS-ERP solution is comparable to the solution from RNAforester.(a)
E. coli 16S rRNA (J01859), (b) D. discoideum 16S rRNA (D16466)

6.4 Discussion of Results 85

6.3.3 Summary for the Clustering Parameters

From both applications arise some aspects which parameters are useful or not for the cluster-
ing approach. First, if one is interested in a high number of matches, clearly the CLUSTER-
MAX-2 strategy reveals the larger clusters. Furthermore, these clusters include more sig-
nificant matches of stem and loop regions. The CLUSTER-MAX-2 strategy enables that an
already produced cluster can be extended in different ways. This advantage leads at the end
to larger clusters.

Second, the choice of the distance threshold τ has a great influence on the resulting clusters
as well. With small values one can achieve more local clusters, whereas clusters from higher
values tend to span large parts of the secondary structure. These clusters are more similar
to the solution from the global LCS-ERP approach. Moreover, the data show that too high
distance thresholds are nearly useless. Over a certain value, the overall size of the largest
cluster is not increasing. Depending on the RNA secondary structure, the size can also
decrease again.

The choice of the distance function clearly depends on the application. Normally, we rec-
ommend the standard function δSEQ1. The data show that this function is already capable to
detect large and significant clusters of exact pattern matches. Further, we suggest the usage
of function δEQL for the search of specific formed clusters.

The running time with strategy CLUSTER-MAX-1 is slightly better than for CLUSTER-MAX-
2. This is obvious, as this strategy produces fewer candidate clusters. The highest influence
on the running time is given by the choice of the distance threshold τ . Therefore we propose
the choice of a sufficiently small τ value with the balance between running time and cluster
size. Nevertheless, the data show that already small values of τ produce good and large
clusters with a fast running time even for large RNAs.

6.4 Discussion of Results

In this thesis we have developed the LCS-ERP approach and the clustering approach for
pairwise sequence structure comparison of RNAs on the basis of exact pattern matches. In
the previous sections we have applied both methods to two different pairs of RNAs and
presented the corresponding results. This section discusses the achieved results and gives
pros and cons for both developed methods.

6.4.1 The LCS-ERP Approach

This approach was developed to utilize exact pattern matches for the detection of global
similarities between two RNAs. In order to show the potential of this method for pairwise
comparison, we have applied the presented dynamic programming algorithm from chapter 4
to two Hepatitis C virus IRES RNAs and two 16S ribosomal RNAs.

According to the shown results for the LCS-ERP approach, one can state for both applications
that the found solutions express global similarities due to the high number of included exact
matchings. Although the secondary structures differ, the found subsets of EPMs unveil

6.4 Discussion of Results 86

similar regions for both pairs of RNAs (see figure 6.1 on page 73 and figure 6.5 on page
80). The high significance is achieved due to the matched loop and stem regions in both
applications. These regions are presumable necessary for the correct functioning of the
considered RNAs. In the case of the two Hepatitis C virus IRES RNAs, they could represent
probable binding sites for the 40S ribosomal subunit. For the two 16S ribosomal RNAs the
matchings could represent conserved structural elements in the ribosome during evolution.
The high coverage of 57% of our solution in this case is also explained by the fact that both
rRNAs are experimental verified. The high significance of the solution for the two Hepatitis
C virus IRES RNAs is supported by the fact that the five largest exact pattern matches are
included in the LCS-ERP solution.

The comparison with the standard alignment approaches RNA align and RNAforester con-
firms the results. Counting only the equivalent matchings, the data show that for both
applications our solution has an accuracy of about 80% in comparsion to the used alignment
methods. This is a high rate, if one takes into consideration that all single nucleotide match-
ings are not part of our solution. Further, there are in both applications a high number of
matchings which differ only in one RNA. This occurs especially in loop regions with similar
consecutive bases and therefore the matchings can be easily shifted.

Comparing the overall number of exact matched nucleotides, the LCS-ERP approach achieves
for both applications better results than the RNAforester algorithm. In the case of the
LCS-ERP method applied to two Hepatitis C virus IRES RNAs our approach finds more
similar regions than the RNAforester algorithm. For both applications the number of exact
matched nucleotides is comparable to the RNA align algorithm. This is definitely a good
result, because the general edit distance algorithm from [JLMZ02] is the most general method
for pairwise sequence structure comparison of RNAs. Clearly, the alignments can be possibly
improved with a different scoring scheme, but we have already chosen a scheme with the focus
on exact matches.

Discussing the running time, the LCS-ERP algorithm is fast for both applications. Even for
long RNAs the global solution was found within seconds. In particular, one has to compare
the running times between the LCS-ERP method and the alignment methods for the two
long 16S rRNAs. The data emphasize the preference of our approach especially for long
RNA sequences to alignment methods. Our approach is able to give much faster reasonable
assertions about the global similarity for two RNAs.

Nevertheless, there are some drawbacks of this method as well as the proposed algorithm.
First, besides the theoretical complexity of O(n2m2) for the LCS-ERP algorithm, the pre-
computed input comprises only about 50000 exact pattern matches for a real scenario with
long RNAs like in the second application. This is much lower than the theoretical maximal
number of |S1| · |S2| and the number of holes is about the same as the number of EPMs.
Therefore it is more realistic to estimate the running time with O(H nm), wherebyH denotes
the number of holes. This corresponds better to the fast running times as well. Moreover,
the presented formal description of the LCS-ERP algorithm is not based on exact pattern
matches. The recursion formula can be changed to a version which really operates on EPMs
instead of sequence positions. Such an algorithm would really benefit from the reduction
of complexity given with the set of exact pattern matches. Third, the approach was not

6.4 Discussion of Results 87

tested with unrelated RNAs. For this case our approach would also find a solution but with-
out a high biologically meaning. However, this is a general drawback of global comparison
methods.

6.4.2 The Clustering Approach

This approach was mainly developed under the aspect that the detection of all exact sequence
structure similarities between RNAs is possible in O(nm). In order to profit from the fast
algorithm according to the method from [SB07], our approach uses a greedy technique to
reduce the overall complexity. In contrast to our global method, a goal was to detect pairwise
similarities with more local properties in form of clusters of EPMs. The usage of a fast
greedy strategy in favour of an optimal method is also supported by the fact that no optimal
algorithm in known which detects the best cluster with a distance threshold τ . In addition,
such an optimal algorithm would have had presumably at least the complexity of the optimal
global algorithm. Further a greedy technique is flexible and its adoption to a different
questioning is often easier.

Similar to the LCS-ERP approach, we have analyzed the performance of the clustering algo-
rithm presented in chapter 5 with two Hepatitis C virus IRES RNAs and two 16S ribosomal
RNAs. The data show that this method is able to identify significant similarities between
two RNAs. The found clusters exhibit similarities between the treated RNAs. For example
see the found cluster in figure 6.3 with τ = 80 as well as the cluster in figure B.2.

In order to make the best of the greedy strategy, we proposed two different clustering strate-
gies. With the focus on the cluster size as well as the significance of the matches, clearly
the CLUSTER-MAX-2 strategy reveals the better clusters. The CLUSTER-MAX-2 strategy
enables that an already produced cluster can be extended in different ways. This advantage
compared to the CLUSTER-MAX-1 strategy leads at the end to more significant clusters.

The flexibility of the clustering approach is mainly achieved due to the different distance
functions as well as the choice of the distance threshold τ . This threshold can be considered
as the decisive parameter for the clustering approach. With a sufficiently small threshold
the found clusters represent local similarties. For example see figure 6.3 on page 76 for τ = 5
and figure B.3 on page 100. With higher thresholds, the clusters span over a large part of the
structure and the solutions are more similar to the LCS-ERP approach. However, the higher
the distance threshold the less changes the found cluster. Therefore, the exact choice of the
distance threshold τ is important and depends on the application. The range of interesting τ
values again depend on the RNAs itself. For the search of local clusters this can be assumed
as disadvantage.

As an alternative distance function we proposed δEQL. This function needs a second threshold
which determines the allowed differences between the distances for two EPMs. From figure
6.6 one can see that the locality is improved, but the overall cluster size is decreased as well.
Similar results may be obtained with smaller distance thresholds. As a structural distance
function we have proposed DISTANCE-STRUCTURE-SHORTESTPATH, but the path finding
problem needs further investigation to use this distance function. The proposed distance
functions can be considered as a starting point for more sophisticated distance functions
which improve both the locality and the significance of the clusters.

6.4 Discussion of Results 88

Concerning the running time, the data show that the algorithm finds clusters in a fast way.
Especially for small distance thresholds τ the solution is found within seconds for both
applications. For higher thresholds τ the running time increases and the outcomes differ
sparsely. The reason is that higher distance thresholds cause that a cluster is updated to
more positions in the data structure CANDSETk. A different data structure could avoid the
large overhead of update operations. This aspect supports the choice of a small threshold in
favour of a high threshold with a higher running time. Especially for large RNAs the usage
of the clustering approach is therefore promising.

A comparison to other methods is pending. However, a comparison to this approach with
the results obtained by the LCS-ERP approach shows that the clusters are feasible and the
LCS-ERP solution can be considered as a global cluster of exact pattern matches. Further,
a comparison to local alignment methods is not possible, because it is not guaranteed that
the largest cluster and the local alignment cover a similar region in the RNA.

Due to the structure of the algorithm there are two general drawbacks. First, it iterates in
loop regions from the left to the right which limits the structure of the distance functions.
The distance in δSEQ is determined only to the right outside bound of the second EPM in order
to maintain the invariant of each set of candidate clusters CANDSETk. The incorporation of
the left outside bound can improve the results, but changes the structure of the algorithm.
Second, the algorithm operates only on the first RNA. Clearly, one would select the smaller
RNA as the first, but the results can be different if the order is changed.

Chapter 7

Discussion

7.1 Conclusion

In this thesis we have investigated two approaches in order to detect similarities between
RNAs given with their primary and secondary structures. According to recent discoveries,
RNAs accomplish with their wide range of biological functions a major role for living organ-
isms. Similar functions are often associated with similar sequential and structural properties
of the considered RNAs.

In contrast to other pairwise comparison methods, the developed methods in this thesis
base solely on exact sequence-structure properties between the given RNAs. These exact
substructures were obtained from the fast maximum common substructure (MCS) algorithm
from [SB07] in form of exact pattern matches (EPMs). The identified EPMs comprise both a
sequential and structural similarity. In biology, EPMs can represent necessary substructures
of important functional motives like SECIS elements. Thus, it is interesting to know, if two
RNAs have several motives in common.

Although the MCS algorithm is able to compute all exact pattern matches, the matchings
itself overlap and cross each other. Approaches are needed which find meaningful subsets of
EPMs representing pairwise similarities between the considered RNAs. Therefore, we have
introduced the Non-Crossing notion as the general condition for exact pattern matches
in nested RNAs. With regard to other pairwise sequence-structure comparison methods, a
Non-Crossing subset of EPMs is both a plain mapping and an arc-preserving subsequence.
The fact that each EPM comprises at least two nucleotides encourages their usage for a
motif-based comparison.

Both methods were developed in order to show the potential of such motif based pairwise
comparison methods. Second, due to the fact that the MCS algorithm detects all EPMs in
O(nm), the developed methods should benefit from this fast algorithm. These goals are
achieved with the discussed drawbacks. The first method can be used to detect global
similarities between two RNAs. Besides its theoretical complexity, the LCS-ERP algorithm
is fast for real scenarios with long RNAs. The second method follows a different algorithmic
approach. The clustering method is flexible enough for different applications. With the right
choice of the parameters, the found clusters represent more local or more global similarities
of the considered RNAs.

7.2 Open Problems and Future Work 90

In general one can conclude that it seems a promising approach especially for large RNAs to
precompute certain types of relationships between the considered RNAs. Such a precomput-
ing can be used to reduce the complexity of the following comparison method. This opens
the application of our approach for multiple comparison methods.

7.2 Open Problems and Future Work

Concerning the global LCS-ERP approach, the algorithm could be changed to a version
which operates solely on exact pattern matches. This could improve the running time for real
applications. The accuracy of the LCS-ERP approach can be increased with the incorporation
of single nucleotide matchings. This could result in a third algorithmic step which aligns the
regions between two consecutive exact pattern matches. Further, there are open questions
in relation to the LAPCS problem. First, is it possible that algorithms for the general NP-
hard LAPCS(Nested, Nested) problem can benefit from a fast precomputed set of exact
pattern matches and their incorporation according to our LCS-ERP algorithm. Second, is it
possible to use the LCS-ERP solution as an approximation of the LAPCS solution.

The clustering approach can be used for the improvement of local sequence structure align-
ment methods. For example, a cluster can be used as starting or anchor point for methods
like the LSSA algorithm from [BW04]. A good “hint” can reduce its running time. Con-
cerning the problem of local clusters in general, a first advancement is the formulation of
an optimal local algorithm. The problem for this case is the definition of an optimal local
common subsequence which consists only of exact pattern matches. One possibility is the
search of optimal clusters according to our definition of clusters. A second approach would
be the usage of scores instead of distances. This enables the incorporation of normalized
scores according to [BHLW05] or other arbitrary scoring schemes [BHLW06].

Appendix A

Comparative Alignments

A.1 RNA align applied to two Hepatitis C Virus IRES RNAs

AF165050(..(......(.(....((((...((.(((((....((((.((((((.(........)))))))))..)).(((((((.....((.....
D45172((((((....))))))...((((.......((.(((((.......(.((((((.(........))))))))........(((((......(.....

AF165050 ----------U--U------G-G----GGGC---GA-CAUUCCACCAUAGAUAAUUC-C-CCUGUGAGGAAUUACU--GUUUUAACGCAGAAAGCGUUUA
D45172 GCCAGCCCCCUGAUGGGGGCGACACUCCACCAUAGAUCACUCC-CC-U-G-UGAGGAACUACU----GUCUUCACGCAGAA--AGCGU------C-U--A

AF165050))....)))))))...))))))))).........((((.....((((...((((....(..(.(((((((.(((((((((...(((.(.((((..((...
D45172)))))).....)))))))..((.((((((.(((.........)))....)))).))......(((..((((((((..((((((.....))..)))

AF165050 GCCAUGGCGUUAGUAUGAGUGUCGUGCAGCUUCCAGGACCCCCCCUC---CCGG---GA--GAGCCAUAGUGGUCUGCGGAACCGGUGAGUAC-ACC---
D45172 GCCAUGGCGUUAGUAUGAGUGUCGUGCAGCCUCCAGGACCCCC-C-CUCCC--GGGAGAGCCA----UAGUGGUCUGCGGAACCGGUGAGUA-CA--CCG

AF165050 .((((..(((((.(((.(((((((......)))....)))).)))...)))))..)))).)).)))).))))(((.((((((.....)))))).)))..)
D45172)......(((((..((.(((((((......)))....)))).))....)))))...................(((...................)))..)

AF165050 GGAAUUGCCAGGAUGACCGGGUCCUUUCUUGGAUCAACCCGCUCAAUGCCUGGAGAUUUGGGCGUGCCCCCGCGAGACUGCUAGCCGAGUAGUGUUGGGU
D45172 G-AAUUGCCAGGACGACCGGGUCCUUUCUUGGAUCAACCCGCUCAAUGCCUGGAGAUU------U-------GGG---------C-G--U---GCCC--C

AF165050)))...))))).)))..)).)).).).......)).....((....(........((.....)).......).....)).)))...)))...........
D45172)))...))))..))))).))))..(.(((((((..((...(((((((((((((..((.....)))))).)))))).)))....(((...((((.....))

AF165050 CGCGAAAGGCC-UUG--UG-GUAC-UG------CCUGAUAGG----G------UGCUUGCG-AG----U-GC-----CCCGGG---AGG--UCUCGUAGA
D45172 CGCG--AGACUGCUAGCCGAGUA-GUGUUGGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCC--GGGA--GGUCUCGUAGA

AF165050 ..((((.......))))...))))...))))...))..........................
D45172))((((.......))))..............)))..............))..)).)))))).

AF165050 CCGUGCAUCAUGAGCACAAAUCCUAAACCCC---AAAGAAAAACCAAACGUAACACCAACCG
D45172 CCGUGCAUCAUGAGCACAAAUCCAAAA---CCCCAAAGAAAAAUCAAACGUAACACCAACCG

Figure A.1: Alignment of two Hepatitis C virus IRES RNAs with RNA align. The
alignment contains 192 exact sequence structure matches, which 168 are in common
with the solution of LCS-ERP.

A.2 RNAforester applied to two Hepatitis C Virus IRES RNAs 92

A.2 RNAforester applied to two Hepatitis C Virus IRES RNAs

Figure A.2: Comparison between LCS-ERP and RNAforester for two Hepatitis C
virus IRES RNAs. The blue colored nucleotides are exact matches in both methods.
The light blue nucleotides denote matched nucleotides in both methods but with
different positions in the other RNA. The green colored nucleotides occur only in
LCS-ERP and the red colored nucleotides occur only in RNAforester. The LCS-ERP
solution has 103 exact sequence structure matchings in common with RNAforester.
The green colored nucleotides show that the LCS-ERP solution include additional stem
and loop regions. (D45172 left RNA, AF165050 right RNA)

A.2 RNAforester applied to two Hepatitis C Virus IRES RNAs 93

AF165050 ----------U------------UGGGGGC----GA-CAUUCCACCAUAGAUAAU
D45172 GCCAGCCCCCUGAUGGGGGCGACACUCCACCAUAGAUCACUCC-CC-U-G-UGAG

* * ** ** *** ** * * * *

AF165050 UCCCCUG-UGAGGAAUUACUGUUUUAA-CGCAGAAAGCGUUUAGCCAUGGCGUUA
D45172 GAA-CUACUG--UCUUCAC-GCAGAAAGCGU------C-U--AGCCAUGGCGUUA

** ** * ** * ** ** * * *************

AF165050 GUAUGAGUGUCGUGCAGCUUCCAGG------A---C-------CCC-------CC
D45172 GUAUGAGUGUCGU---G----CA--GCCUCCAGGACCCCCCCUCCCGGGAGAGCC

************* * ** * * *** **

AF165050 CUCCCGGGAGAGCCAUAGUGGUCUGCGGAACCGGUGAGUACACC-----------
D45172 AU--------AG---U-G--GUCUGCGGAA-------------CCGGUGAGUACA

* ** * * ********** *

AF165050 ---GGAAUUGCCAGGAUGACCGGGUCCUUUCUUGGAUCAACCCGCUCAAUGCCUG
D45172 CCGG-AAUUGCCAGGACGACCGGGUCCUUUCUUGGAUCAACCCGCUCAAUGCCUG

* *********** **************************************

AF165050 GAGAUUUGGGCGUGCCCCCGCGAGACUGCUAGCCGAGUAGUGUUGGGUCGCGAAA
D45172 GAGA-UU-----U-------GG-G-C-G-U-GC----------CC--CCGCGA--

**** ** * * * * * * ** *****

AF165050 GGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCCGGGAGGUCUCGUAG
D45172 GAC----U-G--CU-----A-------------------------------G---

* * * * ** * *

AF165050 ACCGUGCAUCAUGAGCACAAAUCCUAAACCCCAA-------------A-------
D45172 -------------------------C--CGAGUAGUGUUGGGUCGCGAAAGGCCU

* * *

AF165050 ------------------------------------G--A---------------
D45172 UGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCCGGGAGGUCUCGUAGACCGU

* *

AF165050 -------------AAA---A------C----------CAAACGUAACACCAACCG
D45172 GCAUCAUGAGCACAAAUCCAAAACCCCAAAGAAAAAUCAAACGUAACACCAACCG

*** * * ******************

AF165050 ----------(------------(((((((----((-(((((....((((.((((
D45172((((((....))))))...((((.......((.(((((.-..-.-(-((((

**** ** ****** ** * ****

AF165050 (((....-...))))))))))).((((-(((.....((.....))....))))))
D45172 ((.-(....)--)))))))-......(((((------(-.--......)))))).

** ** * ******* * * *** * * * *** *****

AF165050)...))))))))).........(((------(---.-------...-------.(
D45172)))))))..---(----(.--((((((.(((.......)))..)))).)).

********** * *

AF165050 (((((((.((.(((((((.(((((((((...(((.(.((((.((-----------
D45172 .(--------((---.-.--((((((((..-------------((((((....))

* * ********** *

AF165050 ---.((((..(((((.(((.(((((((......)))....)))).)))...))))
D45172))))-.....(((((..((.(((((((......)))....)))).))....))))

******** ****************************** *******

AF165050)..)))).)).)))).))))(((.((((((.....)))))).)))..))))...)
D45172)...-..-----.-------((-(-.-.-.-.)----------))--)))).)--

*** ** * ** *****

AF165050))))))))))).)).)).....(((..((....))..))).))))))........
D45172)))----.-.--))-----)-------------------------------)---

*** **

AF165050 ...((((.......))))...))))...))))))-------------.-------
D45172 -------------------------)--.)))).(.(((((((..((...(((((

**** *

AF165050 ------------------------------------.--.---------------
D45172 ((((((((..((.....)))))).)))))).)))..(((.((((.....))))((

*

AF165050 -------------...---.------.----------..................
D45172 ((.......))))...........)))..............))..)).)))))).

*** * **** ** * *

Figure A.3: Alignment of two Hepatitis C virus IRES RNAs with RNAforester. The
alignment contains 128 exact sequence structure matches, which 113 are in common
with the solution of LCS-ERP.

A.3 RNA align applied to two 16S rRNAs 94

A.3 RNA align applied to two 16S rRNAs

Figure A.4: Comparison between LCS-ERP and RNA align for two 16S rRNAs.
The blue colored nucleotides are exact matches in both methods. The light blue
nucleotides denote matched nucleotides in both methods but with different positions
in the other RNA. The green colored nucleotides occur only in LCS-ERP and the red
colored nucleotides occur only in RNA align. The LCS-ERP solution has 688 exact
sequence structure matchings in common with RNA align. (a) E. coli 16S rRNA
(J01859), (b) D. discoideum 16S rRNA (D16466)

A.3 RNA align applied to two 16S rRNAs 95

J01859(((((........))))).((((.((((((.(((((((((....(((.(((..(((..(((((..((((((((((....))))))).))
D16466(((((........))))).((((.((((((.((((((((.....(((.(((..(((..(((((...(((................).))
J01859 -A-AAUUGAA-GAGUUUGAU-CAUGGCUCAGAUUGAACGCUGGCGGCAGGCCUAACACAUGCAAGUCGAACGGUAACAGGAAGAAGCUUGCUUCUUUGCU
D16466 AAGAAAAAAAUGAGUUUGAUUC-UGGCUCCGAAUGAAUGCUAUCAGUGGGCUUUAUACAUGCAAGUUGAACGCU---AUU---------GAAA---A-AU

J01859))).))))))......(((......((((((((.((...(((((((...((((....(((((((....))))))).....)))).......(((....))
D16466 .)).))))))......(((......(((((((..((...(((((((.((((((...........................))))))..............
J01859 GACGAGUGGCGGACGGGUGAGUAAUGUCUGGGAAACUGCCUGAUGGA--GGGGGAUAACUACUGGAAACGGUAGCUAAUACCGC--AUAACGUCGCAAGA
D16466 -AG-AGUAGCAAAAAGGUGAGUAAUGCAUAUGAAUUUUAAUAAUAAUUUUGGGAAUA--------AAA-GA-AG--AA-AUCCAGAAUAAA-AAGAAAGA

J01859)....(((.(((..((....)))))))).)))))))..))))))))))(((..(.(((..((((((((.......)))))))))))......))))..((
D16466)))))))..)).)))))))(((..(.(((..((((((((.......)))))))))))......))))..((
J01859 CCAAAGAG-GGGGACCUUCGGGCCUCUUGCCAUCGGAUGUGCCCAGAUGGGAUUAGCUAGUAGGUGGGGUAACGGCUCACCUAGGC-GACGAUCCCUAGC
D16466 GGAACUUGAAA-AACAGUAA-GACUC--GUUAUUAUAAAAGCGUAUGUCGAAUUAGGCAGUUGGUGGGGUAAAGGCUUACCAAACCUGA-GAUUCGUAGG

J01859 ((((((....))))...))))))).((((((...........)))))).((((....).)))...)))))).).....(.(((...(((((....)))))
D16466 ((((((....))))...))))))).(((((((........).)))))).(((.......)))...)))))).......(.(((...(((((....)))))
J01859 UGGUCUGAGAGGAUGACCAGCCACACUGGAACUGAGACA-CGGUCCAGACUCCUACGG-GAGGCAGCAGUGGGGAAUAUUGCACAAUGGGCGCAAGCCUG
D16466 UGGUUCGAGAGAAUGAUCAUCCACAUUGGUAUUGAAAGAAC-GACCAAACUC-U--GAAGAGGCUGCAGUAAGGAAUAUUGGACAAUGAGCGCAAGCUUG

J01859 .)))).)).))))))..((((......((((....)))).....)))).....((((((...(....((((((((.......)))))))).....)....
D16466 .)))).)).))))))..((((......((........)).....)))).(.....((((........(.....................)..........
J01859 AUGCAGCCAUGCCGCGUGUAUGAAGAAGGCCUUCGGGUUGUAAAGUACU-UUCAGCGGGGAGGAAGGGAGUAAAGUUAAUACCUUUGCUCAUUGACGUUA
D16466 AUCCAGCUACACUGAGUGAGGGAAGAAGU--AAA---GCGUAAACCUCUUUUAA-UAAGG---AA--G-----A-U-AAU------GA-CAA--A----A

J01859))))))......(((((......(((((.....((....)).......)))))))))).))))))))))..........(((.....(.((((.(.(((.
D16466))))....)...(((((......(((((.....((....)).......)))))))))).))))))))))..........(((.......((((...((((
J01859 CCCGCAGAAGAAGCACCGGCUAACUCCGUGCCAGCAGCCGCGGUAAUACGGAGGGUGCAAGCGUUAAUCGGAAUUACUGGGCGUAAAGCGCACGCAGGCG
D16466 AUUAAAGAAGAAGUCCCGGCUAAUUUCGUGCCAGCCGCCGCGGUAAUACGGAGGGGGCAAGCAUUAUUCGUAAGGAUUGGGCGUAAAGGGUGCGUAGGCU

J01859 (((((((..((.(((((((((....(((((((.....)).)))))..)))))))))..))...)))).)))...(((((((((..(((((((((..((((
D16466 (((((((..(((((((((((.....(((((..........)))))...)))))))).)))...)))).)))...((((((((...(((((((((((((((
J01859 GUUUGUU-AAG-UCAGAUGUGAAAUCCCCGGGCUCAACC-UGGGAACUGCAUCUGAUACU---GGCA-AGCUUGAGUCUCGUAGAGGGGGGUAGAAUUCC
D16466 GGUUCUCAAAGGUAUUAUAUGAAAAACACUGAAAAAA-GAGGUGUGG-GUAUAAAA-ACAAACAAAGAACCUAGAGUAAAGAUGAUGUAUUUAGAAGAAC

J01859 ((((...(((......))).......))))))))..)).....(..((....)))))))))).))))).))))...))))...))))....((((((...
D16466 ((((...(((......))).......)))))))))))).....(..((....))))))))))..)))).))))..))))....))))....(((((((..
J01859 AGGUGUAGCGGUGAAAUGCG-UAGAGAUCUGGAGGAAU-ACCGGUGGCGAAGGCGGCCCCCUGGACGAAGACUGACGCUCAG-GUGCGAAAGCGUGGGGA
D16466 UAAUCUAGAGGUAAAAUUCAAUUUAGAUUAGUUUGACUGACAGUUGGCGAAGGCAAAAUACAA-GCAA-UACUGACGCU-AAAGCACGAAGGUUCAGGGA

J01859 ((...((((.........))))...))))))))..........((((((..((((((((((((.....))))))))))))...((....)).....))))
D16466 .(...((((.........))))...))))))))..........(((((((.......((((.........)))).........((....))....)))))
J01859 GCAAACAGGAUUAGAUACCCUGGUAGUCCACGCCGUAAACGAUGUCGACUUGGAGGUUGUGCCCUUGAGGCGUGGCUUCCGGAGCUAACGCGUUAAGUCG
D16466 GCAAAUCGGAUUAGAGACCCGAGUAGUCUGAACAGUAAACGAUGAGUGUU--CA-A-UAUU--CUAAAA-AGUAU-UU--G-AGUUAACACGUUAAACAC

J01859)))))).(((......((((....))))....))).........(((((.(((((((.((..(((((((((((((((((....((((........)))).
D16466)).))).(((......((((....))))....))).........(((((.(((((((....((((((.(((((((((((....((((........)))).
J01859 ACCGCCUGGGGAGUACGGCCGCAAGGUUAAAACUCAAAUG-AAUUGACGGGGGCCCGCACAAGCGGUGGAGCAUGUGGUUUAAUUCGAUGCAACGCGAAG
D16466 UCCGCCUGAGUAGUACGAUCGCAAGAUUGAAACUCAAG-GUAAUUGACGGAACUUUGCGCAAGCAGUGGAUUAUGUUCAUUAAUUUGAUACAACACGAAA

J01859(((((((.....((((((((...((......(..(((..(.........).)).).).))...((((....)).))))...))).)))....(
D16466(((((((.....((((((...))).)))...((
J01859 AACCUUACCUGGUCUUGACAUCCACGGA-AGU------U--UUC--A---GA-GA-U-GA-G-A-AU--GUGCCUUCGGG-AACC---GUGAGACA---G
D16466 AAUCUUACCCUCCAUUGAAUGACAU--AUA-UAAAACAUGAAACAAAUGUGAAGAAUAGAAGCAGACAAG-G--UUCUAUUAAAAUAAAUG-UCUAACAG

Figure A.5: Alignment of two 16S rRNAs with RNA align. The alignment contains
861 exact sequence structure matches and of these are 688 equal to the solution of
LCS-ERP. (continued next page)

A.4 RNAforester applied to two 16S rRNAs 96

J01859 (.((((..(((((((((...(((((((((....)))..((((......))))..)))))).....((((..(((((((....((..(((.....))))).
D16466 (.(((..(((((((((((..(((((((((....)))...(((......)))...)))))).....(((((...(((((....((..((.......)))).
J01859 GUGCUGCAUGGCUGUCGUCAGCUCGUGUUGUGAAAUGUUGGGUUAAGUCCCGCAACGAGCGCAACCCUU-AUCCUUUG-UUGCCAGCGGUCCGGCCGGGA
D16466 GUGUUGCAUGGCUGUCGUCAGUUCGUGCUGUGAGGUGUAACAUUAAGUUGUGAAACGAACGAAAUCCUUAA--GUUCAAUUACG--AUAUAUA--AUCGA

J01859))))).))...((((((.((.......))))))))........))))....)))).)))...))))))))....)))))))...)).)))))))))
D16466))))).....(((((((............)))))))......)))))...))))).)))...)))))))))...)))))))...)).)))))))))
J01859 -ACUCAAAG-GA-GACUGCCA-GU-GAU-AAACUGGAGGAAG--GU-GGGGAUGACGUCAAGUCAUCAUGGCCCUUACGACCAGGGCUACACACGUGCUA
D16466 GAAAUGGACAGAAGAGUGUGACAUAAAUUAAA-UCACAUUGGUAGUUGAGGAAGAUGUCAAGUCAGUAUGGCCCUUAUAGGAGGGGCUUGAAAUGUAAUA

J01859)...(((((((.....(((..((...(((....)))...))....))).....)))))))......(...((((((((........))))))))...)..
D16466(((((((.....(((..((...(((....)))...))....))).....)))))))......(...((((((((........))))))))...)..
J01859 CAAUGGCGCAUACAAAGAGAAGCGACCUCGCGAGAGCAAGCGGACCUCAUAAAGUGCGUCGUAGUCCGGAUUGGAGUCUGCAACUCGACUCCAUGAAGUC
D16466 CAAUGGUUUCUACAAAAGGAAGCGAAAGUGCAAGCUGGAGCAAAACCUA-AAAAGAAAUCUUAGUUUGGAUUUAUUUCUGCAACUCGAAAUAAUGAAAGC

J01859 ...))))).....((((((((.......))))))))......))...)))))))))).))..(.((.((.(.((((((((........(((((((..(.(
D16466 ...))))))....((((((((.......))))))))...........)))))))))).))....((.((.(.((((((((....................
J01859 GGAAUCGCUAGUAAUCGUGGAUCAGAAUGCCACGGUGAAUACGUUCCCGGGCCUUGUACACACCGCCCGUCACACCAUGG-----GA-GUGGGUU--G-C
D16466 GGAAUUGCUAGUAAUCGUAGAUCAUAAGGCUUCGGUGAAUA-GUUGUCAAAGUUAGUACAUACCGCCCGUCACACCACGGAAAUCAAUCUUU-UUCAGAU

J01859 (.(..(.............((..((...((..(((.(......(.(....................)).)).))))))))...).)))..)....)))))
D16466 ..
J01859 A-A--A--A-G--AA----GU--AG---GUA-GCU-U-A-A--C-C--UU------C-----G---GGAGG-GCGCUUACCACU-UUG--U----GAUUC
D16466 ACAUUAUUAUGUUAAUUAUCUAAAGUUCUUAGGGUAUAACAGUCUCUUUUGAAGAGCAAUUAGAAUGGAGGAG-G-UUA--AUUGUU-AAUUAUCGAA-C

J01859).)..........))))))))..).))..))..).((((((((((....)))))))))).............
D16466))))))))..).))..))....((((((((((....)))))))))).............
J01859 A-U-GA-------CUGGGGUGAAGUCGUAACAAGGUAACCGUAGGGGAACCUGCGGUUGGAUCACCUCCUUA
D16466 AAUAGAGGGGUAACUGGGGUAAAGUCGUAACACGGUAGCUGUUGGGGAACCAGUAGCUGGA--AG-U----A

Figure A.5: (continued) Alignment of two 16S rRNAs with RNA align. The align-
ment contains 861 exact sequence structure matches and of these are 688 equal to the
solution of LCS-ERP.

A.4 RNAforester applied to two 16S rRNAs

J01859 ..-......--(((((....-...))))).((((.((((((.(((((((((....(((.(((..(((..(((((..((((((((((....))))))).))
D16466(((((......-.))))).((((.((((((.((((((((.....(((.(((..(((..(((((--(((...-.--------------))
J01859 aa-auugaa--gaguuugau-cauggcucagauugaacgcuggcggcaggccuaacacaugcaagucgaacgguaacaggaagaagcuugcuucuuugcu
D16466 aagaaaaaaaugaguuugauuc-uggcuccgaaugaaugcuaucagugggcuuuauacaugcaaguugaacgcu--auugaa-a--------------aa

J01859))).))))))......(((......((((((((.((...(((((((.((((....(((((((....))))))).....)))).....(((....)))...
D16466)))-))))))......(((......(((((((..((...(((((((.(((((-(..-..----...--....-...)))))).....-----...---..
J01859 gacgaguggcggacgggugaguaaugucugggaaacugccugauggagggggauaacuacuggaaacgguagcuaauaccgcauaacgucgcaagaccaa
D16466 uag-aguagcaaaaaggugaguaaugcauaugaauuuuaauaauaauuuugg-gaa-ua----aaa--gaag-aaauccagaauaaa-----aag---aa

J01859 .((((((..((..------..)---))))))).)))))))..))))))))))(((..(.(((..((((((((.......)))))))))))-.....))))
D16466--..-...................--.)))))))..)).)))))))(((..(.(((..((((((((.......)))))))))))...-..))))
J01859 agagggggaccuu------cgg---gccucuugccaucggaugugcccagaugggauuagcuaguaggugggguaacggcucaccuaggc-gacgauccc
D16466 agagga--ac-uugaaaaacaguaagacuc--guuauuauaaaagcguaugucgaauuaggcaguuggugggguaaaggcuuaccaaaccuga-gauucg

J01859 ..((((((((....))))...))))))).((((((....--......)))))).((((.-...))))...)))))).).....(.(((...(((((....
D16466 ..((((((((....))))...))))))).(((((((.......-.))-))))).((-(....)--))...)))))).......(.(((...(((((....
J01859 uagcuggucugagaggaugaccagccacacuggaacuga--gacacgguccagacuccu-acgggaggcagcaguggggaauauugcacaaugggcgcaa
D16466 uaggugguucgagagaaugaucauccacauugguauugaaaga-acg-accaaacu-cugaag--aggcugcaguaaggaauauuggacaaugagcgcaa

J01859))))).)))).)).))))))..((((......((((....)))).....))))....((((((...(....((((((((.......)))))))).....)
D16466))))).)))).)).))))))..((((......(---(...)--).....)))).(....((((..--.-----(-.---.-..------..-.).---.-
J01859 gccugaugcagccaugccgcguguaugaagaaggccuucggguuguaaaguacuuucagcggggaggaagggaguaaaguuaauaccuuugcucauugac
D16466 gcuugauccagcuacacugagugagggaagaag---uaaag--cguaaaccucuuuuaauaagga--a-----g-a---u-aa------ug-aca---a-

Figure A.6: Alignment of two 16S rRNAs with RNAforester. The alignment con-
tains 847 exact sequence structure matches and of these are 700 equal with the solution
of LCS-ERP. (continued next page)

A.4 RNAforester applied to two 16S rRNAs 97

J01859))))))......(((((......(((((.....((....)).......)))))))))).))))))))))..........(((.....(.((((.(.
D16466 .--.))))....)...(((((......(((((.....((....)).......)))))))))).))))))))))..........(((.......((((...
J01859 guuacccgcagaagaagcaccggcuaacuccgugccagcagccgcgguaauacggagggugcaagcguuaaucggaauuacugggcguaaagcgcacgca
D16466 a--aauuaaagaagaagucccggcuaauuucgugccagccgccgcgguaauacggagggggcaagcauuauucguaaggauugggcguaaagggugcgua

J01859 (((.(((((((.-((-(((((((((....(((((((.....)))))))..)))))))))..))---)))-))))...((((-(((((..(((((((((..
D16466 (((((((((((..(((((((((((.....(((((.........)))))..-))))))))-)))...)))).)))...((((((((.-..(((((((((((
J01859 ggcgguuuguua-ag-ucagaugugaaauccccgggcucaaccugggaacugcaucugauacu---ggc-aagcuugaguc-ucguagagggggguagaa
D16466 ggcugguucucaaagguauuauaugaaaaacacugaaaaaagaggugugg-guauaaaa-acaaacaaagaaccuagaguaaagau-gauguauuuagaa

J01859 ((((((((...(((......))).-.....))))))))..))-....(..((....)))))))))).))))).))))...))))..))))....((((((
D16466 ((((((((...(((......))).......)))))))))))).....(..((....))))))))))--.))))))))..))))...))))....((((((
J01859 uuccagguguagcggugaaaugcg-uagagaucuggaggaau-accgguggcgaaggcggcccccuggacgaagacugacgcucaggugcgaaagcgugg
D16466 gaacuaaucuagagguaaaauucaauuuagauuaguuugacugacaguuggcgaaggcaaaauaca--agcaauacugacgcuaaagcacgaagguucag

J01859 ...((...((((.........))))...))))))))..........((((((..((((((((((((.....))))))))))))...((....)).....)
D16466 (...(...((((.........))))...))))))))..........((((((-(...-((--((.--....-.))--))..--...((....))....))
J01859 ggagcaaacaggauuagauacccugguaguccacgccguaaacgaugucgacuuggagguugugcccuugaggcguggcuuccggagcuaacgcguuaag
D16466 ggagcaaaucggauuagagacccgaguagucugaacaguaaacgaugagugu-ucaa-ua--uuc--uaaa-aag--uauu--ugaguuaacacguuaaa

J01859))))))))).(((......((((....))))....))).....-...(((((.(((((((.((..(((((((((((((((((....((((........))
D16466))))).))).(((......((((....))))....)))...-.....(((((.(((((((....((((((.(((((((((((....((((........))
J01859 ucgaccgccuggggaguacggccgcaagguuaaaacucaaaug-aauugacgggggcccgcacaagcgguggagcaugugguuuaauucgaugcaacgcg
D16466 cacuccgccugaguaguacgaucgcaagauugaaacucaag-guaauugacggaacuuugcgcaagcaguggauuauguucauuaauuugauacaacacg

J01859))........(((((((.....((((((((.-.(((((-((-....----))--)-))))-.(-((---(----....))-))-----))))).))-).(
D16466))........(((((((....-.-((((((...-..)))))-)...((
J01859 aagaaccuuaccuggucuugacauccacgga-aguuuu-ca-gaga----ug--a-gaau-gu-gc---c----uucggg-aa-----ccgugaga-cag
D16466 aaaaaucuuacccuccauuga-a-ugacauaua-uaaaacaugaaacaaaugugaagaauagaagcagacaagguucuauuaaaauaaauguc-uaacag

J01859 (.((((..(((((((((...(((((((((....)))..((((......))))..)))))).....((((.(((((((-...((..(((.....--)))))
D16466 (.(((..(((((((((((..(((((((((....)))...(((......)))...)))))).....(((((.-(((((...---.-((((.....))))..
J01859 gugcugcauggcugucgucagcucguguugugaaauguuggguuaagucccgcaacgagcgcaacccuuauccuuug-uugccagcgguccgg--ccggg
D16466 guguugcauggcugucgucaguucgugcugugagguguaacauuaaguugugaaacgaacgaaauccuuaa-guucaauu---a-cgauauauaaucgag

J01859)))))-))-..(((((((-(..-.-..)))))))).....-)--)-))....)))).)))..-.))))))))....)))))))...)).)))))))
D16466 ...-))))).....(((((((...........-)))))))-......)))))...))))).)))...)-))))))))...)))))))...)).)))))))
J01859 aacucaaag-ga-gacugccag-uga-u-aaacuggaggaaggu-g--g-ggaugacgucaaguca-ucauggcccuuacgaccagggcuacacacgugc
D16466 aaa-uggacagaagagugugacauaaauuaaa-ucacauu-gguaguugaggaagaugucaagucagu-auggcccuuauaggaggggcuugaaauguaa

J01859)))...(((((((.....(((..((...(((....)))...))....))).....)))))))......(...((((((((........))))))))...)
D16466))....(((((((.....(((..((...(((....)))...))....))).-...)))))))......(...((((((((........))))))))...)
J01859 uacaauggcgcauacaaagagaagcgaccucgcgagagcaagcggaccucauaaagugcgucguaguccggauuggagucugcaacucgacuccaugaag
D16466 uacaaugguuucuacaaaaggaagcgaaagugcaagcuggagcaaaaccua-aaaagaaaucuuaguuuggauuuauuucugcaacucgaaauaaugaaa

J01859))))).....((((((((.......))))))))......))...)))))))))).))..(.((.((.(.((((((((..((((((-((---((-(
D16466))))))....((((((((.......)))))))).....-.....)))))))))).))....((.((.(.((((((((..................
J01859 ucggaaucgcuaguaaucguggaucagaaugccacggugaauacguucccgggccuuguacacaccgcccgucacaccaugggagugggu-ug---ca-a
D16466 gcggaauugcuaguaaucguagaucauaaggcuucggugaaua-guugucaaaguuaguacauaccgcccgucacaccacggaaaucaaucuuuuucaga

J01859 -(-.-------.--..---------((----(((-(.-----(-((-(----..(--(--....---)).))-))))))))...)))))))-))--)-)-
D16466 ..-.-...--.--...............
J01859 -a-a-------g--aa---------gu----agg-ua-----g-cu-u----aac--c--uucg---ggagg-gcgcuuaccacuuuguga-uu--c-a-
D16466 uacauuauuauguuaauuaucuaaaguucuuaggguauaacagucucuuuugaagagcaauuagaauggaggag-g-uua--a--uuguuaauuaucgaa

J01859 ---)-..-------))))))))..).))..))..).((((((((((....)))))))))).............
D16466))))))))..).))..))....((((((((((....))))))))))..--..-.----.
J01859 ---u-ga-------cuggggugaagucguaacaagguaaccguaggggaaccugcgguuggaucaccuccuua
D16466 caauagagggguaacugggguaaagucguaacacgguagcuguuggggaaccaguagcugga--ag-u----a

Figure A.6: (continued) Alignment of two 16S rRNAs with RNAforester. The
alignment contains 847 exact sequence structure matches and of these are 700 equal
with the solution of LCS-ERP.

Appendix B

Additional Results

B.1 Clustering applied to two 16S rRNA

Cδ,τ
CMAX1, δSEQ1, τ = 50

Cδ,τ
CMAX1, δSEQ1, τ = 50

Figure B.1: CLUSTER-MAX-1 strategy applied to two 16S rRNA. The figure shows
the largest found clusters for the given parameters. Please see figure B.2 in comparison.
(a) E. coli 16S rRNA (J01859), (b) D. discoideum 16S rRNA (D16466)

B.1 Clustering applied to two 16S rRNA 99

Cδ,τ
CMAX2, δSEQ1, τ = 50

Figure B.2: CLUSTER-MAX-2 strategy applied to two 16S rRNA. The figure shows
the largest found clusters for the given parameters. Please see figure B.1 in comparison.
(a) E. coli 16S rRNA (J01859), (b) D. discoideum 16S rRNA (D16466)

B.1 Clustering applied to two 16S rRNA 100

Cδ,τ
CMAX2, δSEQ1, τ = 10

Figure B.3: CLUSTER-MAX-2 strategy applied to two 16S rRNA. The figure shows
the largest found clusters for the given parameters. (a) E. coli 16S rRNA (J01859),
(b) D. discoideum 16S rRNA (D16466)

B.2 Clustering applied to two Hepatitis C virus IRES RNAs 101

B.2 Clustering applied to two Hepatitis C virus IRES RNAs

τ = 10 τ = 60

Figure B.4: Additional clusters not shown in figure 6.2. Analysis for Hepatitis C
virus IRES RNAs with clustering strategy CLUSTER-MAX-1. The pictures show the
largest found cluster for the given distance threshold τ value. Each EPM is shown in
a different color. The arrows indicate regions with large matchings.

τ = 10 τ = 60

Figure B.5: Additional clusters not shown in figure 6.3. Analysis for two Hepatitis
C virus IRES RNAs with clustering strategy CLUSTER-MAX-2. The pictures show
the largest found cluster for the given distance threshold τ value. Each EPM is shown
in a different color. The arrows indicate regions with large matchings.

Appendix C

MCS algorithm

C.1 Pseudocode for the MCS-algorithm

Algorithm C.1: loop-walking

Function loop-Walking(i, j)1

Init: li1 = 1 ; // global position i2

Init: lj1 = 1 ; // global position j3

for k = li1 to lisize do4

for l = lj1 to ljsize do5

r = 0;6

if (k, l) not yet considered then7

while k + r < lisize ∧ l + r < ljsize8

S1[k + r] = S2[l + r] ∧9

STRUCT1[k + r] = STRUCT2[l + r]10

do r = r + 1;11

M loop(pos(l), pos(k)) = maxMatching(k,l,r);12

C.1 Pseudocode for the MCS-algorithm 103

Algorithm C.2: max-matching

Function maxMatching(i, j, r)1

Init: size = 0, m = 0;2

3 while m ≤ r and S1[i+m] = S2(j +m) do3

if STRUCT1(i+m) = ss and STRUCT2(j +m) = ss then4

size = size+ 1;5

else if STRUCT1(i+m) = lp and STRUCT2(j +m) = lp then6

if S1[i+m+ 1] = S2[j +m+ 1] then7

size = size+M eb(pos(i+m), pos(j +m));8

m = m+ 1;9

else return size+Mnb(pos(i+m), pos(j +m));10

else if STRUCT1(i+m) = rp and STRUCT2(j +m) = rp then11

size = size+Mnb(pos(i+m), pos(j +m));12

m = m+ 113

return size;14

C.2 MCS-algorithm applied to two Hepatitis C virus IRES RNAs 104

C.2 MCS-algorithm applied to two Hepatitis C virus IRES RNAs

Figure C.1: Two Hepatitis C virus IRES RNAs. The five largest exact pattern
matches are highlighted. EPM 1 is the largest found substructure which comprises 30
nucleotides. All marked EPMs hold the Non-Crossing condition. Figure taken from
[SB07]. GenBank codes: AF165050 (right RNA), D45172 (left RNA)

Bibliography

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–10, 1990.

[BFRS03] Guillaume Blin, Guillaume Fertin, Irena Rusu, and Christine Sinoquet. RNA
sequences and the edit(nested,nested) problem. Technical Report RR-
IRIN-03.07, IRIN, Université de Nantes, 2003.

[BHLW05] Rolf Backofen, Danny Hermelin, Gad M. Landau, and Oren Weimann. Nor-
malized similarity of RNA sequences. In Proc. 12th Symposium on String Pro-
cessing and Information Retrieval (SPIRE 2005), volume 3772 of Lecture Notes
in Computer Science, pages 360–369. Springer-Verlag, 2005.

[BHLW06] Rolf Backofen, Danny Hermelin, Gad M. Landau, and Oren Weimann. Lo-
cal alignment of RNA sequences with arbitrary scoring schemes. In Proc. 17th
Symp. Combinatorial Pattern Matching, volume 4009 of Lecture Notes in Com-
puter Science, pages 246–257. Springer, 2006.

[BMR95] V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between RNA
strings. In Proc. 6th Symp. Combinatorial Pattern Matching, pages 1–16, 1995.

[BS04] Rolf Backofen and Sven Siebert. Fast detection of common sequence struc-
ture patterns in RNAs. In Symposium on String Processing and Information
Retrieval 2004 (SPIRE 2004), pages 79–92, 2004.

[BW04] Rolf Backofen and Sebastian Will. Local sequence-structure motifs in RNA.
Journal of Bioinformatics and Computational Biology (JBCB), 2(4):681–698,
2004.

[BWF+00] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,
I. N. Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids
Research, 28(1):235–42, 2000.

[CB00] Peter Clote and Rolf Backofen. Computational Molecular Biology: An Introduc-
tion. Mathematical and Computational Biology. Jon Wiley & Sons, Chichester,
August 2000. series editor S. Levin. 290 pages.

[Cor01] Thomas H. Cormen. Introduction to Algorithms. MIT Press, 2. edition, 2001.

[Cou02] Jennifer Couzin. Breakthrough of the year. Small RNAs make big splash.
Science, 298(5602):2296–7, 2002.

Bibliography 106

[CSS+02] J. J. Cannone, S. Subramanian, M. N. Schnare, J. R. Collett, L. M. D’Souza,
Y. Du, B. Feng, N. Lin, L. V. Madabusi, K. M. Muller, N. Pande, Z. Shang,
N. Yu, and R. R. Gutell. The Comparative RNA Web (CRW) Site: an online
database of comparative sequence and structure information for ribosomal,
intron, and other RNAs: Correction. BMC Bioinformatics, 3(1):15, 2002.

[Edd02] S. R. Eddy. A memory-efficient dynamic programming algorithm for optimal
alignment of a sequence to an RNA secondary structure. BMC Bioinformatics,
3(1):18, 2002.

[Eva99] Patricia Anne Evans. Algorithms and Complexity for Annotated Sequence Anal-
ysis. PhD thesis, University of Alberta, 1999.

[FCDK01] J. E. Fletcher, P. R. Copeland, D. M. Driscoll, and A. Krol. The selenocysteine
incorporation machinery: interactions between the SECIS RNA and the SECIS-
binding protein SBP2. RNA, 7(10):1442–53, 2001.

[GCA06] Raymond F. Gesteland, Thomas R. Cech, and John F. Atkins. The RNA
World. Cold Spring Harbor Laboratory Press, 3. edition, 2006.

[GGN02] J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated
sequences. In Proc. of the 22nd Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2002), 2002.

[GJMM+05] Sam Griffiths-Jones, Simon Moxon, Mhairi Marshall, Ajay Khanna, Sean R.
Eddy, and Alex Bateman. Rfam: annotating non-coding RNAs in complete
genomes. Nucleic Acids Res., 33:D121–D124, 2005.

[GL98] M. Gerstein and M. Levitt. Comprehensive assessment of automatic structural
alignment against a manual standard, the scop classification of proteins. Protein
Science, 7(2):445–56, 1998.

[Got82] O. Gotoh. An improved algorithm for matching biological sequences. Journal
of Molecular Biology, 162:705–708, 1982.

[GSS01] J. Gorodkin, S. L. Stricklin, and G. D. Stormo. Discovering common stem-loop
motifs in unaligned RNA sequences. Nucleic Acids Research, 29(10):2135–44,
2001.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

[HBS04] I. L. Hofacker, S. H. Bernhart, and P. F. Stadler. Alignment of RNA base
pairing probability matrices. Bioinformatics, 20(14):2222–2227, 2004.

[HFS+94] Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian Bonhoeffer, Man-
fred Tacker, and Peter Schuster. Fast folding and comparison of RNA secondary
structures. Monatshefte Chemie, 125:167–188, 1994.

[Hir77] Daniel S. Hirschberg. Complexity of common subsequence problems. In FCT,
pages 393–398, 1977.

Bibliography 107

[HTGK03] Matthias Höchsmann, Thomas Töller, Robert Giegerich, and Stefan Kurtz.
Local similarity in RNA secondary structures. In Proceedings of Computational
Systems Bioinformatics (CSB 2003), 2003.

[JLMZ00] T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest common subsequence
problem for arc-annotated sequences. In Proceedings of the 11th Annual Sym-
posium on Combinatorial Pattern Matching, volume 1848 of Lecture Notes in
Computer Science, pages 154–165. Springer-Verlag, Berlin, 2000.

[JLMZ02] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit distance
between RNA structures. Journal of Computational Biology, 9(2):371–88, 2002.

[JWZ95] T. Jiang, J. Wang, and K. Zhang. Alignment of trees - an alternative to tree
edit. Theoretical Computer Science, 143(1):137–148, 1995.

[KCN+03] Gregory V. Kryukov, Sergi Castellano, Sergey V. Novoselov, Alexey V.
Lobanov, Omid Zehtab, Roderic Guigo, and Vadim N. Gladyshev. Charac-
terization of mammalian selenoproteomes. Science, 300(5624):1439–43, 2003.

[LCJW02] Guohui Lin, Zhi-Zhong Chen, Tao Jiang, and Jianjun Wen. The longest com-
mon subsequence problem for sequences with nested arc annotations. J. Com-
put. Syst. Sci., 65(3):465–480, 2002.

[LCWI01] Giuseppe Lancia, Robert Carr, Brian Walenz, and Sorin Istrail. 101 opti-
mal PDB structure alignments: a branch-and-cut algorithm for the maximum
contact map overlap problem. In Proc. of the Fifth Annual International Con-
ferences on Compututational Molecular Biology (RECOMB01). ACM Press,
2001.

[LRV98] H.P. Lenhof, K. Reinert, and M. Vingron. A polyhedral approach to RNA
sequence structure alignment. In Proc. of the Second Annual International
Conferences on Compututational Molecular Biology (RECOMB98), volume 5,
pages 517–30. ACM Press, 1998.

[McC90] J. S. McCaskill. The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers, 29(6-7):1105–19, 1990.

[MSZT99] D.H. Mathews, J. Sabina, M. Zuker, and D.H. Turner. Expanded sequence de-
pendence of thermodynamic parameters improves prediction of RNA secondary
structure. Journal of Molecular Biology, 288(5):911–40, 1999.

[NW70] S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443–53, 1970.

[San85] David Sankoff. Simultaneous solution of the RNA folding, alignment and pro-
tosequence problems. SIAM J. Appl. Math., 45(5):810–825, 1985.

[SB05] David W. Staple and Samuel E. Butcher. Pseudoknots: RNA structures with
diverse functions. PLoS Biology, 3(6):e213, 2005.

Bibliography 108

[SB07] Sven Siebert and Rolf Backofen. A dynamic programming approach for finding
common patterns in RNAs. Journal of Computational Biology, 14(1):34–45,
2007.

[Sie06] Sven Siebert. Common Sequence Structure Properties and Stable Regions in
RNA Secondary Structures. PhD thesis, Albert-Ludwigs-University Freiburg,
Institute of Computer Science, 2006.

[SW81] T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195–197, 1981.

[WG06] Kay C. Wiese and Edward Glen. jviz.RNA - an interactive graphical tool
for visualizing RNA secondary structure including pseudoknots. In Proceed-
ings of the 19th International Symposium on Computer Based Medical Systems
(IEEE/CBMS-2006), pages 659–664, 2006.

[WSPB97] R. Wilting, S. Schorling, B. C. Persson, and A. Böck. Selenoprotein syn-
thesis in archaea: Identification of an mRNA element of Methanococcus jan-
naschii probably directing selenocysteine insertion. Journal of Molecular Biol-
ogy, 266(4):637–41, 1997.

[WTK+94] A. E. Walter, D. H. Turner, J. Kim, M. H. Lyttle, P. Muller, D. H. Mathews,
and M. Zuker. Coaxial stacking of helixes enhances binding of oligoribonu-
cleotides and improves predictions of RNA folding. Proc. Natl. Acad. Sci.
USA, 91(20):9218–22, 1994.

[ZS81] M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Research,
9(1):133–48, 1981.

[ZS89] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing
distance between trees and related problems. SIAM Journal on Computing,
18(6):1245–1262, 1989.

[ZWM00] Kaizhong Zhang, Lusheng Wang, and Bin Ma. Computing similarity between
RNA structures. unpublished, 2000.

List of Figures

1.1 Putative SECIS elements in non-coding regions of M. jannaschii 7

2.1 RNA backbone and standard base pairs . 12
2.2 Three levels of structural information for a yeast PHE-tRNA 13
2.3 Loop decomposition for a nested RNA secondary structure 15
2.4 RNA secondary structure representations . 16
2.5 Set of mammalian SECIS elements . 17
2.6 Two trees and a tree alignment of both trees 22
2.7 Allowed edit operations for an alignment of two arc-annotated sequences . . . 25

3.1 Two patterns P1 and P2 . 29
3.2 Three arbitrary partial matchings between the left and right RNA 30
3.3 Matchings which do not preserve bonds . 32
3.4 Maximally extended EPM between the left and the right RNA 33
3.5 Dot-plot of exact pattern matches for two Hepatitis C virus IRES RNAs . . . 36
3.6 Set of possible exact pattern matches between two RNAs 37
3.7 Ordering of exact pattern matches relative to an EPM for Non-Crossing. . 38
3.8 Pattern bounds for a pattern in one RNA . 40
3.9 Additional nucleotides in a matching closure 41
3.10 MCS algorithm, Numbering of nucleotide position for an inner loop 42
3.11 MCS algorithm, two cases for a base-pair matching (i, i′) with (j, j′) 44

4.1 LCS-ERP, score composition for an EPM E with two holes 50

5.1 Illustration for distance function δ 1
SEQ . 57

5.2 Illustration for distance function δEQL . 58
5.3 Illustration for distance function δPATH . 58
5.4 Two EPMs which do not satisfy Non-Crossing for matching closures 61
5.5 EPM E and positions in CANDPOSE . 63
5.6 Clustering of a multi-loop closed by base pair (r0, r′0) 64

6.1 Two Hepatitis C virus IRES RNAs, LCS-ERP approach 73
6.2 Two Hepatitis C virus IRES RNAs, clustering with CLUSTER-MAX-1 75
6.3 Two Hepatitis C virus IRES RNAs, clustering with CLUSTER-MAX-2 76
6.4 Comparison LCS-ERP and RNA align for two Hep. C virus IRES RNAs . . . 78
6.5 Two 16S rRNAs, LCS-ERP approach . 80
6.6 Two 16S rRNAs, clustering with distance function δEQL 82
6.7 Comparison between LCS-ERP and RNAforester for two 16S rRNAs 84

A.1 Alignment of two Hepatitis C virus IRES RNAs with RNA align 91

List of Figures 110

A.2 Comparison LCS-ERP and RNAforester for two Hep. C virus IRES RNAs . . 92
A.3 Alignment of two Hepatitis C virus IRES RNAs with RNAforester 93
A.4 Comparison between LCS-ERP and RNA align for two 16S rRNAs 94
A.5 Alignment of two 16S rRNAs with RNA align 95
A.5 Alignment of two 16S rRNAs with RNA align 96
A.6 Alignment of two 16S rRNAs with RNAforester 96
A.6 Alignment of two 16S rRNAs with RNAforester 97

B.1 Two 16s rRNAs, clustering with CLUSTER-MAX-1, δSEQ1, τ = 50 98
B.2 Two 16s rRNAs, clustering with CLUSTER-MAX-2, δSEQ1, τ = 50 99
B.3 Two 16s rRNAs, clustering with CLUSTER-MAX-2, δSEQ1, τ = 10 100
B.4 Two Hepatitis C virus IRES RNAs, clustering with CLUSTER-MAX-1 101
B.5 Two Hepatitis C virus IRES RNAs, clustering with CLUSTER-MAX-2 101

C.1 Two Hepatitis C virus IRES RNAs, Result from MCS algorithm 104

List of Tables

6.1 Comparison of the clustering strategies CLUSTER-MAX-1 and CLUSTER-MAX-
2 for two Hepatitis C virus IRES RNAs . 74

6.2 Comparison of the number of found exact matchings by LCS-ERP and RNA align
and RNAforester . 77

6.3 Comparison of the clustering strategies CLUSTER-MAX-1 and CLUSTER-MAX-
2 for two 16S rRNAs . 81

6.4 Results for two 16S rRNAs with distance function δEQL for τ = 10 and two
different values for ∆DT . 82

6.5 Comparison of the number of exact matches found by LCS-ERP and RNA align
and RNAforester . 83

List of Algorithms

4.1 LCS-ERP, precompute-holes . 52

4.2 LCS-ERP, compute-hole-D . 52

5.1 Clustering Strategy, clusterAll (main loop) 66

5.2 Clustering strategy, clusterEPM . 66

C.1 MCS algorithm, loop-walking . 102

C.2 MCS algorithm, max-matching . 103

Selbständigkeitserklärung

Hiermit erkläre ich, dass die hier vorliegende Diplomarbeit von mir selbständig und nur unter
Verwendung der angegebenen Hilfsmittel und Quellen erstellt wurde.

Jena, den

Unterschrift

