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Abstract. A Hidden Markov Model (HMM) is a common statistical
model which is widely used for analysis of biological sequence data and
other sequential phenomena In the present paper we extend HMMs with
constraints and show how the familiar Viterbi algorithm can be general-
ized, based on constraint solving methods. HMMs with constraints have
advantages over traditional ones in terms of more compact expressions
as well as opportunities for pruning during Viterbi computations. We
exemplify this by an enhancement of simple prokaryote gene finder given
by an HMM.

1 Introduction

Hidden Markov Models (HMMs) are one of the most popular models for analysis
of sequential processes taking place in a random way, where “randomness” may
also be an abstraction covering the fact that a detailed analytical model for
the internal matters are unavailable. Such a sequential process can be observed
from outside by its emission sequence (letters, sounds, measures of features,
all kinds of signals) produced over time, and a HMM postulates a hypothesis
about the internal machinery in terms of a finite state automaton equipped with
probabilities for the different state transitions and single emissions. Decoding or
prediction for a given observed sequence means to compute the most probably
state transitions that the HMM can go through to produce the sequence, and
thus this represents a best hypothesis for the internal structure or “content”
of the sequence. HMMs are widely used in speech recognition and biological
sequence analysis [8, 1].

Gene prediction aims at algorithmically identifying stretches of a DNA se-
quence that are biologically functional, in particular protein-coding genes but
also other functional elements such as RNA genes [16]. Several HMM based
gene finders have been proposed for gene prediction, including [3, 6, 5]. Decoding
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an “observed” DNA sequence using an HMM produces a state sequence, that
appears as an annotation that identifies regions of genes and non-genes. The
automaton defines the regular language for these annotations [12].

With the usual decoding algorithms, such as the Viterbi algorithm [14], it is
difficult to add prior knowledge to an HMM about, say, verified coding regions
in a specific sequence, or other side-constraints (e.g., this-and-this subsequence
cannot occur in a coding region). For instance, fixing a known coding region at a
given position n would require to modify the HMM so it is guaranteed to in this
state after n iterations. This HMM transformation may require exponentially
many new states.

In this paper, we focus on an extension of HMMs, called Constrained HMMs
(CHMMs). The concept of CHMMs seems to introduced by Sato et al. in [10],
although earlier and unrelated systems have used the same or similar names
(commented on below). CHMMs restrict the set of allowed state and emission
sequences (runs) by the addition of constraints to a standard HMM. The contri-
bution of this paper is to introduce this framework into Constraint Programming.
A constraint model is proposed to represent the allowed “runs”. With this model,
decoding essentially becomes a constraint optimization problem. We adapt the
Viterbi algorithm to take into account such constraints using constraint solving
techniques, and we exemplified it for enhancing an HMM based prokaryote gene
finder by constraints that state existence of already known genes,

The paper is organized as follows: section 2 describes the background on
HMM required to understand the rest of the paper and exemplifies it with a
simple gene finder. In section 3, the constraint model for CHMM is described.
Finally, section 4 presents related works and our plans for further work.

2 Background

Here we present Hidden Markov Models (HMMs) and the Viterbi algorithm so
we can adapt them later with constraints.

2.1 Hidden Markov Model

For simplicity of the technical definitions, we limit ourselves to discrete first
order HMMs with a distinguished initial state and no explicit final state (i.e.,
any state is final); the generalization to more initial states is straightforward.

Definition 1. A Hidden Markov Model (HMM) is a 4-tuple 〈S,A, T,E〉, where

– S is a set of states which includes an initial state referred to as s(0);
– A is a finite set of emission symbols, individually denoted ei;
– T is a set of transition probabilities {p(si; sj)}si∈S representing the probabil-

ity to transit from one state to another. For such si,
∑

sj∈S\{s0}
p(si; sj) = 1.

– E is a set of emission probabilities {p(si; ej)}si∈S\{s0} representing the prob-
ability of emitting symbol from a state. For such si,

∑
ej∈E p(si; ej) = 1.

A run of a HMM is defined as a pair consisting of a sequence of states s(0)s(1) . . . s(n),
called a path and a corresponding sequence of emissions e(1) . . . e(n) an called
observation, such that



– ∀i > 0, p(s(i); s(i+1)) > 0 (probability to transit from s(i) to s(i+1) );
– ∀i > 0, p(s(i); e(i)) > 0 (probability to emit e(i) from s(i)).

The probability of such a run is defined as
∏

i=1..n p(s(i−1); s(i)) · p(s(i); e(i)).

HMMs are commonly used to find the probability of a given observation, de-
coding the path corresponding to an observation and finally finding the model
probabilities that maximizes the likelihood of generating a given set of observa-
tions. In this paper, we will only explain the decoding computation using the
Viterbi algorithm [14].

2.2 The Viterbi Algorithm

The Viterbi algorithm [14] is a dynamic programming algorithm for finding a
most probable path corresponding to a given observation. The algorithm keeps
track of, for each prefix of an observed emission sequence, the most probable
(partial) path leading to each possible state, and extends those step by step into
longer paths, eventually covering the entire emission sequence.

We present the algorithm here as a rewriting system on a set of 4-tuples Σ,
each representing a (potentially most probable) path for such prefixes; a fixed
emission sequence e(1) · · · e(n) is assumed to be given. Each such 4-tuple is of
form 〈s, i, p, π〉 where π is a partial path ending in state s and representing a
path corresponding to the emission sequence prefix e(1) · · · e(i); p is the collected
probability for the emissions and transitions applied in the construction of π.

The algorithm can be described by the two rewriting rules given by Fig.

1. The trans rule expands an existing partial path one step in each possible

trans : Σ := Σ ∪ {〈s′, i+1, p · p(s; s′) · p(s′; e(i+1)), π s′〉}

whenever 〈s, i, p, π〉 ∈ Σ and p(s; s′), p(s′; e(i+1)) > 0
and prune does not apply.

prune : Σ := Σ \ {〈s, i+1, p′, π′〉}
whenever 〈s, i+1, p, π〉, 〈s, i+1, p′, π′〉 ∈ Σ,
p ≥ p′.

Fig. 1. Rewriting rules for the Viterbi algorithm for traditional HMMs

direction whereas prune removes those that are not optimal up to a given state;
the condition that trans cannot apply in case prune is possible, ensures that
no non-optimal partial path is expanded. The rules are expected to execute as
long as possible, except that trans is only applied when it adds a 4-tuple to Σ
that has not been added before. We take the following correctness property for
granted.

Proposition 1. Assume a HMM H with the notation as above and an obser-
vation Obs = e(1) · · · e(n). When the Viterbi algorithm Fig. 1 is executed from



an initial set of 4-tuples {〈s0, 0, 1, ǫ〉}, ǫ being the empty path and s0 the initial
state of H, it terminates with a set of 4-tuples Σfinal. It holds that

– For any 〈s, n, p, π〉 ∈ Σfinal, π is a most probable path for Obs ending in s
and with probability p.

– Whenever there exists a path for Obs ending in s, Σfinal includes a 4-tuple
of the form 〈s, n, p, π〉.

The algorithm can run in time linear in the length of the given emission sequence
times a quadratic factor of the number of states in the HMM; the latter is thus
constant for a specific HMM.

2.3 An example HMM: a simple gene finder

An an example of an HMM that we later extend with constraints, we consider
the problem of identifying protein coding genes in prokaryotes. A DNA sequence
is composed of molecules, called nucleotides, represented by the four letters a, c, t

and g. Some parts of a DNA sequence code for genes, called coding regions, while
other parts do not and are called non coding regions. Coding regions contain
a number of codons, triplets of nucleotides, each coding for an amino acid in
a protein (to be produced by the gene). For prokaryotes, a coding region is
contiguous, and it begins with a specific start codon, which is often atg, and
ends with a stop codon, which is one of taa, tga or tag.

start codon

coding

ctg: 0.06
atg: 0.82
gtg: 0.08

aag: 0.0146

aaa: 0.0219 aaa: 0.0335
aac: 0.0212
aag: 0.0103
aat: 0.0184
aca: 0.0076

taa: 0.07
tag: 0.63
tga: 0.3

0.9994

0.0006

0.997

0.003

aca: 0.0136

aac: 0.0172

1

aat: 0.018

1 1

stop codon

non coding

s0

Fig. 2. A simple HMM for Prokaryote genes prediction

Fig. 2 shows a simple HMM for prediction of genes; more advances HMMs
are used in successful gene finders that have been reported in the literature,
e.g., Genemark.HMM [6] and EasyGene [5], and they can also be handled by
our approach. The emission symbols of this HMM are codons, thus three letters
form one symbol. It has four states: start codon, non coding, coding, stop

codon From non coding, any codon can be emitted. From state start codon,



only start codons ata, atg, att, ctg, gtg and ctg can be emitted. From coding,
any codon can be emitted except stop codons, taa, tga and tag. From state
stop codon, only stop codons taa, tga or tag can be emitted. A consequence
of the simplification of only emitting entire codons and not individual letters
in this HMM is that we restrict to non coding regions whose length measured
in codons is divisible, which is not the case in reality. Transition probabilities
have been computed from an already annotated genome, Escherichia coli, K-12
substr. MG1655 (Genbank access NC 000913).

We can illustrate the annotation process as follows; we consider a small piece
of E.coli from position 115 to 255.

ctt agg tca cta aat act tta acc aat ata ggc ata gcg cac aga cag ata aaa att aca gag

tac aca aca tcc atg aaa cgc att agc acc acc att acc acc acc atc acc att acc aca ggt

aac ggt gcg ggc tga,

The Viterbi algorithm computes the most probable path which is indicated as
follows:

ctt · · · tcc atg aaa · · · ggc tga

non coding · · · non coding start codon coding · · · coding stop codon

From the indicated path, we can extract an annotation that states a non coding
region from position 115 to 189 and a coding region from position 190 to 255.

3 CHMMS and Constraint Models for prediction

In this section, we give a formal definition of CHMMs and propose a constraint
model for CHMM runs which is employed in an extended Viterbi algorithm.

3.1 Constrained Hidden Markov Model

A CHMM restricts the behavior of an HMM by constraints that must hold on
paths that are considered.

Definition 2. A constrained HMM (CHMM) is defined by a 5-tuple 〈S,A, T,E,C〉
where 〈S,A, T,E〉 is an HMM and C is a set of constraints, each of which is a
mapping from HMM runs into {true, false}.

A run of a such a CHMM, 〈path, obs〉 is a run of the corresponding HMM
for which C(path, observation) is true (understood as the conjunction of the
individual constraints in C).

Notice that we defined constraints in a highly abstract way, independently of
any specific constraint language. However, the Markov processes considered in
this paper are discrete, and in the following we will apply constraints over finite
domains [13]. In [11], constraints were expressed using in Prolog using tests and
failure, in a way that do not invite to using constraint solving techniques.



3.2 A Constraint model for runs of CHMM

The constraint model represents runs of a CHMM. A run corresponds to a so-
lution of the constraint model.

Let 〈S,A, T,E,C〉 be a CHMM and n an integer value that represents run
length. The constraint model is described by the following syntax:

run([s(0), S1, . . . , Sn], [E1, . . . , En])

where each variable Si and Ei represents the state and respectively the emission
at the step i. The domain of Si and Ei, noted dom(Si) and respectively dom(Ei),
is S \ {s(0)} and respectively E.

run([s(0), S1, . . . , Sn], [E1, . . . , En]) is true iff

∃s(1) ∈ dom(S1), . . . ,∃s(n) ∈ dom(Sn) and

∃e(1) ∈ dom(E1), . . . ,∃e(n) ∈ dom(En),

C(s(0)s(1) . . . s(n), e(1) . . . e(n)) is true and

p(s(0); s(1)) · p(s(1); e(1)) . . . p(s(n−1); s(n)) · p(s(n); e(n)) > 0 (1).

By definition of a CHMM, variables Si and Ei are constrained to satisfy by
C. Formula (1) states that s(0)s(1) . . . s(n) and e(1) . . . e(n) is a run the HMM.
From this formula, restrictions on the domain of the variables Si and Ei can be
added.

The formula (1) is composed of a product of probabilities. Then, its value is
positive iff the value of all the transition or emission probabilities are positive.
We used this property to establish a (local) relationship between Si and Si+1

and Si and Ei. Indeed, valuation of Si to s(i) and Si+1 to s(i+1) can be part of a
solution of the constraint model whenever p(s(i); s(i+1)) > 0. These relationships
between variables of run/2 are modeled by the following constraints added on
them:

trans(Si, Si+1) and emit(Si, Ei)

where Si, Si+1 and Ei are variables of run/2.
trans(Si, Si+1) is true iff

∃s(i) ∈ dom(Si) and s(i+1) ∈ dom(Si+1), p(s(i); s(i+1)) 6= 0.

emit(Si, Ei) is true iff
∃s(i) ∈ dom(Si) and e(i) ∈ dom(Ei), p(s(i); e(i)) 6= 0.

These constraints are used for domain pruning during constraint propagation.
For example, let us suppose that emission taa is observed at the step i of a run
of the simple gene finder. During constraint propagation, emit(Si, Ei) prunes
the domain of Si to {noncoding, stop codon}.

Constraints C of a CHMM are simply added on the variables of run/2. In the
following, an example of C is defined to include prior knowledge on the simple
gene finder.



3.3 A constrained gene finder

We illustrate the constraint model on the simple gene finder presented subsection
2.3. The HMM associated with the simple gene finder is constrained to be in
certain states at given positions. For instance, this CHMM allows the inclusion
of information about known coding regions during the Viterbi computation.

Consider
run([s(0), S1, . . . , Sn], [e(1), . . . , e(n)])

the constraint model associated with the simple gene finder where e(1), . . . , e(n)

is a sequence of n codons. A set of variables Si is constrained to be equal to
State with the following constraint:

fix(State, Position1, Position2)

where State ∈ S \ {s(0)}, Position1 ∈ {1, . . . , n}, Position2 ∈ {1, . . . , n} and
Position1 ≤ Position2 .

fix(State, Position1, Position2) is true iff

∃k ∈ dom(Position1) and ∃l ∈ dom(Position2),∀i, k ≤ i ≤ l, Si = State.

For example, information of the position of a coding region can be expressed
as the conjunction of

fix(start codon, P1, P1) ∧ P1 + 1 = P2∧

fix(coding, P2, P3) ∧ P3 + 1 = P4 ∧ fix(stop codon, P4, P4).

These constraints on the simple gene finder oblige runs to be in a coding region
between the position P1 and P4.

3.4 Viterbi Computation for a CHMM

Consider a CHMM 〈S,A, T,E,C〉, an observation e(1) . . . e(n) and a constraint
model

run([s(0), S1, . . . , Sn], [e(1), . . . , e(n)]).

The most probable path is computed by finding the solution s(1), . . . , s(n) of the
constraint model that maximizes the objective function: run probability.

Viterbi computation for CHMM is expressed as a rewriting system on a set
of 5-tuples Σ. Each such 5-tuple is of form 〈s, i, p, π, σ〉 where π is a partial
path ending in state s and representing a path corresponding to the emission
sequence prefix e(1) · · · e(i); p is the collected probability for the emissions and
transitions applied in the construction of π and σ is the current constraint store,
a conjunction of constraints. Solutions of the constraint store are denoted by
sol(σ).

The two rules of the classical Viterbi algorithm are adapted for CHMM
(see. Fig. 3). Viterbi computation is executed from an initial set of 5-tuples
{〈s(0), 0, 1, ǫ, C ∧

∧
i>0 trans(Si, Si+1)∧

∧
i>0 emit(Si, Ei))〉}. The trans ctr rule

expands an existing partial path one step in a restricted number of directions



trans ctr : Σ := Σ ∪ {〈s′, i+1, p · p(s; s′) · p(s′; e(i+1)), π s′, σ ∧ Si+1 = s′〉}

whenever 〈s, i, p, π, σ〉 ∈ Σ, p(s; s′), p(s′; e(i+1)) > 0
check sat(σ ∧ Si+1 = s′) and prune ctr does not apply.

prune ctr : Σ := Σ \ {〈s, i+1, p′, π′, σ′〉}
whenever 〈s, i+1, p, π, σ〉, 〈s, i+1, p′, π′, σ′〉 ∈ Σ,
p ≥ p′ and sol(σ′) ⊆ sol(σ).

Fig. 3. Rewriting rules for the Viterbi algorithm for CHMM

that satisfy the constraint store. This satisfiability checking of the constraint
store is denoted by check sat. prune ctr removes partial paths that are non op-
timal solutions. This is the case when two conditions are satisfied: the probability
to reach s is not optimum and solutions of σ′ are also solutions of σ. The second
condition avoids removing partial paths that could be part of an optimal solu-
tion. If sol(σ′) and sol(σ) can not be compared, we can not conclude that the
partial path π′ is not part the optimal solution.

Correctness property is argued in the previous paragraph. prune ctr rule
allows us to remove only partial paths detected as part of a non optimal solution.
Unlike the classical Viterbi algorithm, this algorithm can run in time exponential
in the length of the given emission sequence. Indeed, potentially all the extended
partial paths need to be kept in Σ. However, with an efficient check sat, partial
paths that can not lead to the solution of the constraint model will be discarded
as soon as possible. Size reductions of Σ due to prune ctr is also important. The
size for Σ will stay reasonable if the two constraint stores can easily be compared.
That is the case for the fix constraint. Indeed, this constraint constrains only a
restricted set of variables of the path. Outside this set, the remaining variables
are not constrained. Then, the comparison is straightforward.

4 Discussion and future work

The term “Constrained HMM” is used in [9, 4], refers to restrictions on the finite
automaton associated with a HMM but not as constraint on HMM runs. In [11],
CHMMs were introduced to exemplify an EM algorithm for models with possible
derivation failures. Our approach differs since we take care about constraints on
the HMM during Viterbi computation whereas they do that during the learning
process.

In constraint modeling, we can denote two recent works with a similar ap-
proach of ours [15, 17]. In [15], Will et al. propose a constraint model to represent
pairwise alignment problem which integrates constraints related to non-coding
RNA. In [17], Zytnicki et al. describe a weighted CSP model for locating motifs
of non-coding RNA.

In this paper, a constraint model that represents runs of constrained HMMs is
defined. In this framework, Viterbi computation is expressed as an optimization
problem and conditions for an efficient computation are presented. Finally, a gene



finder that includes prior knowledge is presented along the paper to exemplify a
usage of CHMM.

A first implementation based on PRISM allows us to perform a first experi-
ment on fixing a coding region for the simple gene finder. PRISM build-ins give
us for free a Viterbi computation for CHMM. To improve the efficiency of the
pruning ctr rule to reduce the search, we work on an implementation of the
proposed algorithm in CHR [2], a multiset based rewriting system, that closely
follows rewriting systems described in this paper.

We also work on an automatic generation of the constraint model given a
HMM. This implementation will be based on our Probabilistic Choice Con-
straints library [7] which allow the simulation of partially defined probabilistic
choices in Constraint Programming. In the constraint model, probabilistic choice
is partially known when origin state of an transition or emission is not known.
This framework will facilitate the definition of other kinds of constraints which
can be combined with existing gene finding methods, improving flexibility and
the quality of the results.
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