
Constraint Based Languages for Biological Reactions

Stefano Bistarelli1,2,3 and Marco Bottalico1

1 Università G. d’Annunzio, Pescara, Italy
[bottalic,bista]@sci.unich.it

2 Istituto di Informatica e Telematica (CNR), Pisa, Italy
[stefano.bistarelli]@iit.cnr.it

3 Dipartimento di Matematica Informatica, Università di Perugia, Italy
bista@dipmat.unipg.it

Abstract. In this paper, we study the modelization of biochemical reac-
tion by using concurrent constraint programming idioms. In particular we
will consider the stochastic concurrent constraint programming (sCCP),
the Hybrid concurrent constraint programming languages (Hcc) and the
Biochemical Abstract Machines (BIOCHAM).

Keywords: Biochemical Reactions, (Stochastic - Hybrid) Concurrent Con-
straint Programming, Biocham.

1 Introduction

System biology is a science integrating experimental activity and mathemati-
cal modeling. They study the dynamical behaviors of biological systems. While
current genome project provide a huge amount of data on genes or proteins, lots
of research is still necessary to understand how the different parts of a biological
system interact in order to perform complex biological functions. Mathematical
and computational techniques are central in this approach to biology, as they
provide the capability of formally describing living systems and studying their
proprieties.

A variety of formalisms for modeling biological systems has been proposed
in the literature. In [2], the author distinguishes three basic approaches: discre-
te, stochastic, continuous, additionally we have various combinations between
them. Discrete models are based on discrete variables and discrete state changes;
continuous models are based on differential equations that typically model
biochemical reactions; finally in the stochastic the probabilities may appear
explicitly in random variables and random numbers, or implicitly like in kinetics
laws. In the latest approach we have a simplified representation of processes,
an integration of stochastic noise in order to get more realistic models. The need
to capture both discrete and continuous phenomena, motivates the study of
dynamical systems [6].

The goal of this paper is to show different kinds of languages to model
biochemical reactions in order to compare and to use their appropriate features
in different ways.

2 Background on Biochemical reactions and Blood
Coagulation

In this paper, we want to examine the Biochemical Reactions; they are chemical
reactions involving mainly proteins. In a cell, there are many different proteins,
hence, the number of reactions that can take place, can be very high. All the
interactions that take place in a cell, can be used to create a diagram, obtaining
a biochemical reaction network.

We will examine in the following, one of the thirteen enzymatic reaction of
the blood coagulation [13], in the generic form, through the Michaelis-Menten
kinetics:

XI + XIIa⇋k1

k−1
XI : XIIa⇀k2 XI + XIa

where XI is the enzyme (E) that binds substrate (S) = XIIa, to form an enzyme-
substrate complex (ES) = XI : XIIa. After we have the formation of product
(P) = XIa and the release of the unchanged enzyme (E) = XI, ready for a new
reaction.

We are interesting at the Blood Coagulation [13]. It is part of an important
host defense mechanism termed hemostasis (the cessation of blood loss from
a damaged vessel). Blood clotting is a very delicately balanced system; when
hemostatic functions fail, hemorrhage or thromboembolic phenomena results.
The chemical reactions that constitute all the process, can be see as a decom-
position of many kinds of enzymatic reactions, involved reactants, products,
enzymes, substrates, stoichiometric coefficients, proteins, inhibitors and chemi-
cal accelerators. Upon vessel injury, platelets adhere to macromolecules in the
subendothelial tissues and then aggregate to form the primary hemostatic plug.
The platelets stimulate local activation of plasma coagulation factors, leading to
generation of a fibrin clot that reinforces the platelet aggregate. Later, as wound
healing occurs, the platelet aggregate and fibrin clot are broken down. Mecha-
nisms that restrict formation of platelet aggregates and fibrin clots to sites of
injury are necessary to maintain the fluidity of the blood.
The classical model of blood coagulation involves a series (or “cascade”) of
zymogen activation reactions as shown in fig. 1. At each stage a precursor
protein (zymogen) is converted to an active protease by cleavage of one or more
peptide bonds in the precursor molecule. The types of components that can be
involved at each stage include the following:

– a protease (from the preceding stage)
– a zymogen
– a non-enzymatic protein cofactor
– calcium ions
– an organizing surface (provided by a phospholipid emulsion in vitro or by

platelets in vivo)

Fig. 1. Coagulation Cascade: (http:dels.nas.edu/ilar n/ilarjournal/50 2/Graphics/50 2 144f1.jpg)

Under the Michaelis-Menten hypotheses [5], the most important equations
are:
KM =

k−1+k2

k1
Michaelis constant. It measures the affinity of the enzyme for the

substrate: if KM is small there is a high affinity, and viceversa.
VMAX = V0 = k2[E0]. This is the maximum rate, would be achieved when all of
the enzyme molecules have substrate bound (Hp1). [E0] is the starting quantity
of enzyme E. k2 is also called kcat.
d [P]

dt =
VMAX[S]
KM + [S] . This final equation, is usually called the “Michaelis-Menten equa-

tion”. It shows the speed of the formation of the product.
When the amount of product P is small, this will be a good approximation

and the equations can now be integrated:

E: d [E]
dt = (k2 + k−1)[ES] − (k1)[E][S].

S: d [S]
dt = k−1[ES] − (k1)[E][S].

ES: d [ES]
dt = k1[E][S] − (k−1 + k2)[ES].

P: d [P]
dt = k2[ES].

3 Concurrent Constraint Programming

The Concurrent Constraint (cc) programming paradigm [11] concerns the beha-
viour of a set of concurrent agents with a shared store, which is a conjunction of
constraints. Each computation step possibly adds new constraints to the store.
Thus information is monotonically added to the store until all agents have
evolved. The final store is a refinement of the initial one and it is the result of
the computation. The concurrent agents do not communicate directly with each

other, but only through the shared store, by either checking if it entails a given
constraint (ask operation) or adding a new constraint to it (tell operation).

For the CCP’s syntax, we have that P is the class of programs, F is the class
of sequences of procedure declarations (or clauses), A is the class of agents, c
ranges over constraints, and x is a tuple of variables. Each procedure is defined
(at most) once, thus nondeterminism is expressed via the+ combinator only. We
also assume that, in p(x) :: A, we have vars(A) ⊆ x, where vars(A) is the set of all
variables occurring free in agent A. In a program P = F.A, A is the initial agent,
to be executed in the context of the set of declarations F. This corresponds to the
language considered in [11] which allows only guarded nondeterminism. The
syntax is the following:

P ::= F.A
F ::= p(x) :: A | F.F
A ::= success | f ail | tell(c) → A | E | A‖A | ∃xA | p(x)
E ::= ask(c)→ A | E + E

4 Stochastic Concurrent Constraint Programming

sCCP [3] is obtained by adding a stochastic duration to the instruction inte-
racting with the constraint store C, i.e. ask and tell. The most important feature
added in the sCCP is the continuous random variable T, associated with each
instruction. It represents the time needed to perform the corresponding ope-
rations in the store. T is exponentially distributed, and its probability density
function is f (τ) = λe−λτwhereλ is a positive real number (rate of the exponential
random variable) representing the expected frequency per unit of time. The
duration of an ask or a tell can depend on the state of the store at the moment
of the execution.

The main difference of sCCP with classical cc, is the presence of two different
actions with temporal duration, ask and tell, identified by a rate function λ:
tellλ(c) and askλ(c), following the probability law. It means that the reaction
occurs in a stochastic time T, f (τ) = λe−λτ whose mean is 1/λ; i.e. tell∞ is an
instantaneous execution while tell0 never occurs.

Other functions are the same that in CCP, except for the variables, that in CCP
are rigid, in the sense that, whenever they are instantiated, they keep that value
forever. Time-varying variables (called stream variables) can be easily modeled
in sCCP as growing lists with a unbounded tail: X = [a1, ..., an|T]. When the
quantity changes, we simply need to add the new value, say b, at the end of
the list by replacing the old tail variable with a list containing b and a new tail
variable: T = [b|T′]. When we need to know the current value of the variable X,
we need to extract from the list, the value immediately preceding the unbounded
tail. The stream variables are denoted with assignment $=.

We model the biochemical equation [5], in sCCP, with the following recur-
sively defined method:

react(XIIa,XIa,KM,V0) : −
askrMM(KM,V0,XIIa)(XIIa > 0).
(tell∞(XIIa $= XIIa − 1)||tell∞(XIa $= XIa + 1)).
react(XIIa,XIa,KM,V0)
Where the rate λ of the ask, is computed by the Michaelis-Menten kinetics:

rMM(KM,V0,XIIa) =
V0×XIIa
XIIa+KM

. Roughly the program inserts in the store the current
value for the variables KM,V0,XIIa; it checks the value of the factor XIIa, then,
with an immediate effect, it updates the values for the factors XIIa (reagent) and
XIa (product) with the new values. Subsequently it executes a new instance of
the program.

5 Hybrid cc

Hybrid concurrent constraint programming languages (Hybrid cc [1]) is a pow-
erful framework for modeling, analyzing and simulating hybrid systems, i.e.,
systems that exhibit both discrete and continuous change. It is an extension
of Timed Default cc [12] over continuous time. One the major difficulty in the
original cc framework is that cc programs can detect only the presence of infor-
mation, not the absence [2]. Default cc extends cc by a negative ask combinator
(i f a else A) which imposes the constraint a at the program A.

The cc paradigm has no concept of timed execution. For modeling discrete,
reactive systems, introduced the idea (from synchronous programming) that
the environment reacts with a system (program) at discrete time ticks. At each
time tick, the program executes a cc program, outputs the resulting constraint,
and sets up another program for execution at the next clock tick. Concretely, this
led to the addition of two control constructs to the language next A (execute A
at the next time instant), and always A (execute A at every time instant). Thus,
intuitively, the discrete timed language was obtained by uniformly extending
the untimed language (cc or Default cc) across (integer) time [12].

To model Biological systems in Hybrid cc, we used the following schema [2]:

Biology Hybrid cc
reaching thresholds discrete events
time, concentration continuous variables

kinetics differential equations
gene interaction concurrency

stochastic behevior random numbers

Authors in [12] allows constraints expressing initial value (integration) pro-
blem, e.g. constraints of the form init(X = 0); cont(dot(X) = 1) read as follows:
the initial value of X is 0; the first derivative of X is 1; from these we can
infer at time t that X = t. Additionally they adds to the untimed Default cc a
single temporal control construct: hence A. Declaratively, hence A imposes the
constraints of A at every time instant after the current one. Operationally, if
hence A is invoked at time t, a new copy of A is invoked at each instant in (t; 1).

The current implementation of Hcc [12], supports two types of constraints,
which are handled by interval methods: ordinary differential equations and
nonlinear algebraic constraints [2].

e = 10,

s = 5,

es = 0.01,

p = 0,

always { k1 = 1, km1 = 0.1, k2 = 0.01,

cont(e), cont(s),

if (e >= 0.000000001) then {

e’ = ((km1+k2) * es) - (k1 * e * s),

s’ = (km1 * es) - (k1 * e * s) ,

es’ = (k1 * e * s) - ((km1+k2) * es),

p’ = k2 * es }

else { e’ = 0, s’ = 0, es’ = 0, p’ = 0 }

}

We can observe that in the first row, we have the initial conditions with the
quantity of Enzyme (100), Substrate (10), Enzyme-Substrate (0), Product (0),
and the rate of the three reactions: k1 = 1 for the first one, k−1 = 0.1 for the
second one and k2 = 0.01 for the third reaction. With the syntax cont(e, s) we
assert that the rates are continuous. Subsequently we control the current values
of e and s then we can start the reaction; the = operators, has the usual meaning
of “equal”. We can easily obtain the quantity of e, s, es, p in the next time instant.
If the “if condition” doesn’t hold, we obtain the previous amount of factors.

6 Biochemical Abstract Machine

Biochemical Abstract Machines (BIOCHAM [7]) is a software environment for
modeling complex cell processes, making simulations (i.e. in silico experiments),
formalizing the biological properties of the system know from real experi-
ments, checking them and using them as specification when refining a model.
BIOCHAM is based on two aspects: the analysis and simulation of boolean,
kinetic and stochastic model and the simulation of biological proprieties in tem-
poral logic. For kinetics model, BIOCHAM can search for appropriate parameter
values in order to reproduce a specific behavior observed in experiments and
formalized in temporal logic.

We can use the Michaelis-Menten kinetics to represent the first enzymatic re-
action of blood coagulation. To explain the language used to model the reaction
in the BIOCHAM [4] language, we can translate the syntax in the following way:

(k1*[E]*[S],km1*[ES]) for E + S <=> ES.

k2*[ES] for ES => E + P.

parameter(k1,1).

parameter(km1,0.1).

parameter(k2,0.01).

present(E,100).

present(S,10).

absent(ES).

absent(P).

There are two different syntax operator, used to model the different kinds of
reaction: <=> and =>. The first one model the reversible reaction, involved in
the ES formation, this reaction can be reversible. The second one model the
irreversible reaction which produce the P factor. The f or operator show us for

which substances, the reaction is performed: the first f or is for the E+S⇋k1

k−1
E : S

reaction, the second one for the E : S⇀k2 E + P reaction.
The result of this simulation, in BIOCHAM generate a graph to the plot a

relation graph and a table of results in relation to time variation. In the graph
(fig.2), we have the plot of four kinds of curves, referring to the four substances
involved in the reaction: the initial decreasing of the Enzyme and of the Substrate
(violet and red curves respectively), the formation to the Enzyme-Substrate
complex (green curve) and finally the Product formation (sky blue line).

Fig. 2. Graphic

7 Related and future works

Most important features are represented in [10, 8]. In [10] the authors suggests
to model biomolecular process i.e. protein networks, by using the pi-Calculus,
while in [8] is shown that there are two formalisms for mathematically descri-
bing the time behavior of a spatially homogeneous chemical systems: the deter-
ministic approach and the stochastic one. The first regards the time evolution
as a continuous and predictable process which is governed by a set of ordinary

differential equations (the “reaction-rate equations”), while the seconds regards
the time evolution as a kind of random-walk process which is governed by a
single differential-difference equation (the “master equation”).

From the application point of view, the examined languages allows the
biologist to model biological systems in a high-level and declarative way, using
different kinds of applications and languages construct that capture directly
a variety of biological phenomena. We are interest in the non Deterministic
process Calculus (ntcc [9]) because it is a concurrent constraint programming
which include time process with a graphic formation, in order to describe our
biochemical reactions.

The aim of many researches in the bioinformatics field is to improve the
modeling features of data in order to describe biological behaviors in a more
accurate way, such that they can be used in in silico modeling in the drug
sperimentations (preclinic) area; we aim to save time and money in the last
sperimental phase on humans. Biological reactions are the first step towards a
description of cycles cellular-based mechanisms.

References

1. Panos J. Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry, editors. Hybrid
Systems II, volume 999 of Lecture Notes in Computer Science. Springer, 1995.

2. Alexander Bockmayr and Arnaud Courtois. Using hybrid concurrent constraint
programming to model dynamic biological systems. In ICLP, pages 85–99, 2002.

3. Luca Bortolussi and Alberto Policriti. Modeling biological systems in stochastic
concurrent constraint programming. Constraints, 13(1-2):66–90, 2008.

4. Nathalie Chabrier-Rivier, François Fages, and Sylvain Soliman. The biochemical
abstract machine biocham. In Proc. CMSB, pages 172–191, 2004.

5. Thomas Delvin. Texbook of biochemistry with clinical correlations. McGraw Hill Book
co., 2001.

6. Schaft A.J. van der and J.M. Schumacher. Introduction to Hybrid Dynamical Systems.
Springer-Verlag., 1999.

7. François Fages. Temporal logic constraints in the biochemical abstract machine
biocham. In Patricia M. Hill, editor, LOPSTR, volume 3901 of Lecture Notes in Com-
puter Science, pages 1–5. Springer, 2005.

8. Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. In The
Journal of Physical Chemistry, pages 2340–2352, 1977.

9. Julian Gutiérrez, Jorge A. Pérez, Camilo Rueda, and Frank D. Valencia. Timed
concurrent constraint programming for analysing biological systems. Electr. Notes
Theor. Comput. Sci., 171(2):117–137, 2007.

10. Aviv Regev, William Silverman, and Ehud Y. Shapiro. Representation and simula-
tion of biochemical processes using the pi-calculus process algebra. In Proc. Pacific
Symposium on Biocomputing, pages 459–470, 2001.

11. Vijay A. Saraswat. The concurrent constraint programming research programmes.
In CP, page 588, 1995.

12. Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Timed default concurrent
constraint programming. J. Symb. Comput., 22(5/6):475–520, 1996.

13. Williams. Williams Hematology. McGraw Hill Book co., 2006.

