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1. What is Bioinformatics?

In this article we aim to introduce the topic of bioinformatics to an audience of computer
scientists, and highlight those areas within the subject which we believe to be suitable for
the application of constraint solving techniques, or where similar techniques are already
used. Bioinformatics is an exciting and rapidly developing field, and we hope that we
haven’t predicted all the developments in the next few years!

One of the first issues that need to be addressed is what is meant by “bioinformatics”—
it is already almost a colloquial word in the scientific community, but its interpretation
varies widely. The word bioinformatics has two obvious components—“bio-” and “infor-
matics”; we deal with each of these in turn.

At present the widely accepted interpretation of the “bio” part is molecular biology,
i.e. the study of the structure and activity of macromolecules essential to life. However,
there are other areas within biology which can be considered to be within the remit of
bioinformatics, for example the study of evolution, and genetics.

Informatics is a word which has not “officially” entered the English language, but the
French, German and Russian traditions broadly agree that its meaning coincides with
“computer science.” Thus one definition of informatics is “the science of systematic
processing of information, using modeling and abstraction of the concrete realisation.”

Thus, when considering both parts of the word, we consider the proper meaning
to be solving problems arising from biology using methodology from computer sci-
ence. We are strongly of the opinion that bioinformatics is not about implementing the
mechanisation of existing solutions to problems stemming from biology; in general bioin-
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formatics requires either a variant of an existing algorithm from the domain of computer
science, or the design of a new algorithm.

An alternative term, more or less coinciding with bioinformatics is computational
biology, used more in North America than in Europe. Waterman [44] considers that
there are three interpretations, all of which are valid:

One, that it is a subset of biology proper and any required mathematic and computer
science can be made up on demand; two, that it is a subset of the mathematical
sciences and that biology remains a remote but motivating presence; three: that
there are genuine interdisciplinary components, with the original motivation from
biology suggesting mathematical problems, which suggest biological experiments.

Of course, there are other fields which broadly apply principles from biology to derive
novel approaches in computer science, for example biocomputing, neural computing,
genetic algorithms, and evolutionary computing.

Since it is rare to find researchers who are both computer scientists and biologists, it is
generally the case that effective research in bioinformatics requires the joint effort from
scientists in both fields. An important corollary is that in order to achieve such coopera-
tion all parties must use a common language and be prepared to learn about issues from
the other side. In fact many researchers from the biological and physical sciences work-
ing in bioinformatics have acquired significant computing skills, and may have greater
specialist knowledge in mathematics and statistics than do many computer scientists. An
illustration of this is the heavy use of hidden Markov models in bioinformatics, a topic
about which most computer scientists know very little. It is the computer scientist’s task
to apply the approach of problem abstraction together with efficient algorithm design to
the problems from the biological domain.

A challenge for computer scientists who are involved in research in bioinformatics
is to achieve results that make a contribution to computer science. Of course this is
not the main motivation for biologists; moreover there are some exciting projects in
bioinformatics which in the short to medium term are unlikely to contribute to computer
science.

1.1. What Biologists Want from Bioinformatics

The great aim of research in bioinformatics is to understand the functioning of living
organisms in order to “improve the quality of life.” This improvement will be achieved
by many means including drug design, identification of genetic risk factors, gene therapy,
genetic modification of food crops and animals, etc. Some of these, especially the last,
are proving to be controversial.

1.2. The Central Dogma

The study of proteins, how they interact with each other, and how genes are regulated is
central to the understanding of the basic principles of the functioning of living organisms.



BIOINFORMATICS AND CONSTRAINTS 143

Proteins comprise approximately 60% of the dry mass of a living cell, and are linear
heteropolymers that are constructed from a chain or sequence of monomers called amino
acids, of which twenty different types are involved in the composition of proteins. It is
widely accepted that the function of proteins (and RNA) is determined by their structure,
and it is known that structure is determined uniquely by the sequence of amino acids, or
nucleotides in the case of RNA.

The central dogma of information flow in biology essentially states that the sequence
of amino acids making up a protein and hence its structure (folded state) and thus its
function, is determined by transcription from DNA via RNA.

The central dogma states that once ‘information’ has passed into a protein it cannot
get out again. The transfer of information from nucleic acid to nucleic acid, or
from nucleic acid to protein, may be possible, but transfer from protein to protein,
or from protein to nucleic acid, is impossible. Information here means the precise
determination of sequence, either of bases in the nucleic acid or of amino acid
residues in the protein. Francis Crick [11]

Thus bioinformatics is concerned in a major way with the elicitation of DNA sequences
from genetic material, the annotation of whole or part of sequences with biologically rele-
vant properties (e.g. function, location, context) the control of gene expression (i.e. under
what circumstances proteins are transcribed from DNA), and the relationship between the
amino acid sequence of proteins and their structure. At present, the only physical meth-
ods to determine protein structure are X-ray crystallography and NMR (nucleo-magnetic
resonance), both of which are not only very time-consuming, but cannot be applied to all
classes of proteins. One of the holy grails of bioinformatics is to develop computational
methods to determine protein structure from amino-acid sequence.

2. Bioinformatics Today

2.1. A Classification of Problem Areas

The problem areas in Bioinformatics can be broadly divided into three classes:

Problems Specifically Related to the Central Dogma: This includes both those
related to a specific level of information, i.e. sequence, structure or function, and those
that encompass more than one level. Examples of problems at specific levels are pattern
discovery in sequences, structure alignment and analysing patterns of functional relation-
ships within metabolic pathways. Perhaps the most illustrative example of a multilevel
problem is determining the relationship between sequence, structure and function for a
group of proteins.

Problems Related to Data in General: With the exponential growth of knowledge
in (molecular) biology, there are rapidly growing problems such as storage, retrieval, and
analysis of the data. Hence there are issues of database design for biological resources,
representation and visualisation of biological knowledge, and the application of data
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analysis methods such as data mining. A key underlying technique is that of abstraction
of the data; it is of course imperative that the operations over the abstract data preserve
the biological meaning of the operations on the original form of the data.

Simulation of Biological Processes: This means in general the prediction of dynamic
behaviour of a biological system on the basis of its components. Examples include the
simulation of protein folding (molecular dynamics) or of metabolic pathways.

In the following we concentrate on the first class of problems, i.e. sequence, structure
and function, and select a subset of illustratory examples.

2.2. Sequence Related Problems

2.2.1 Physical Map

In this problem, one has a collection of short, known substrings of the DNA called probes
with the property that they occur exactly once in the DNA, and a set of fragments of the
DNA (called clones), which (ideally) cover a specific region of interest on the DNA. For
both the clones and the probes, the exact location on the DNA and the ordering of the
locations are not known. The goal is to find the ordering of the probes and/or clones in
the DNA.

The first step is to check for every probe i and every clone j, whether clone j contains
the substring denoted by probe i. This is done by performing hybridisation experiments.
This gives a matrix 4aij5, where aij is 1 if probe i is on clone j, otherwise 0. Now if there
were no error in the hybridisation experiment, then the ordering of the probes could be
found be reordering the rows and columns of the matrices such that the resulting matrix
has the consecutive ones property. But since the experiments are faulty, the problem of
finding the ordering minimizing the errors is NP-complete (see e.g., [10], [18]).

The ordering of the probes, usually together with a good bound on the distance
between to successive probes, constitutes a physical map, which can be used for dif-
ferent purposes. One is to use this map when sequencing the genome. The reason is that
sequencing is done by splitting DNA into fragments, which are sequenced in the sequel.
The remaining problem is to generate the original DNA-sequence out of sequenced frag-
ments. This is usually done by searching for overlapping fragments. The problem is that
DNA contains so-called repeats. This are long fragments of DNA which are repeated
several times on the DNA. Clearly, such repeats may not be used for the process of
generating the original DNA sequence out of overlapping fragments. One way to check
this is to use a physical map.

There are several other important computational problems involved in sequencing
a genome, but we do not describe them in more detail here.

2.2.2 Comparison and Alignment

The goal of this activity is to compare two sequences or structures, and in addition to
return an alignment, i.e. some information regarding those parts which are very similar.
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In general, sequence alignment is fast, whereas structure alignment is slow due to its
high complexity.

One of the first fields in bioinformatics was DNA sequence alignment. The reason
for the interest in sequence alignment stems from the fact that there are many different
proteins which have common ancestors, and that these homologous (i.e., related by evo-
lution) proteins have a similar structure and function. In addition, homologous proteins
often have similar sequences. Using a reverse reasoning, sequence similarity is used to
detect the homology of protein structures.

Clearly, the quality of this approach depends on the similarity measure used, which is
determined by a model of evolution. The usual approaches use a model with substitution,
deletion or insertion of a single amino-acid (see e.g. [44] for an overview). In this case,
sequence alignment can be performed in polynomial time using a dynamic programming
approach. There are also new approaches which deal with more complex models of evo-
lution such as [3], who considers in addition duplication of substrings (tandem repeats).
A more complex problem is that of multiple sequence alignment [28].

On the level of structure comparison, there are approaches to compare two differ-
ent structures by superposing elements using translation and rotation to minimise the
atomic coordinate Root Mean Square Deviation (RMSD) [14]. Structures can also be
compared at a higher level of abstraction than atomic coordinates by using a topolog-
ical approach based on secondary structure elements [20]; this can be performed over
topology graphs by detecting maximal cliques [29] or by pattern discovery and structural
alignment [27].

Protein threading uses a mixture of sequence alignment and structure alignment. In this
approach an alignment is made between two sequences, one with an unknown structure
and the other with a known structure, taking into account the known structure [32].
This is done by identifying core segments in the structure connected by loop regions
of variable length, and then attempting to align, with gaps if necessary, the sequence of
unknown structure with those parts of the sequence of known structure which correspond
to the core structural elements. This problem has been shown to be NP-hard.

2.2.3 Pattern Matching and Pattern Discovery

In both sequences (DNA and RNA) as well as structures (RNA and protein), there are
functionally significant regions that are repeated in different entities; these regions can
be often described by patterns. A need has arisen to be able to search through genome
or protein databases (which may be very large), and identify entries which match the
pattern. Obviously, this has a parallel in formal language theory, see for example Searls’
excellent discussion in [38]. In reality, biological data is noisy, and in the case of string
languages, stochastic approaches have been developed using for example hidden Markov
models [12] and stochastic context-free grammars [31].

Although patterns can be constructed by hand, it is preferable in the general case to use
a mechanised (machine learning) approach, i.e., pattern discovery [4, 35], with patterns



146 R. BACKOFEN AND D. GILBERT

being validated by an expert. Finding sites regulating gene expression in DNA may
require context sensitive patterns.

One active research field is to design appropriate pattern languages and associated
discovery mechanisms which are able to express significant properties of structures as
opposed to strings [20], [25].

Pattern discovery can also be performed over structures and metabolic pathways, but
we do not discuss these very new areas in this paper.

2.2.4 Phylogenetic Trees

If we have any set of species that are related, then the relationship between these species
(resp. entities) is called a phylogeny. When constructing a phylogenetic tree, the task is
to set up a tree to show how the different species have evolved from a common ancestor.
In addition, the trees generated are often labelled. The labels indicate the time when the
species evolved from a common ancestor, or any other measure of the distance between
the different species. Note that the construction of phylogenetic trees is not necessarily
applied to species, but to any kind of entities where we can set up some sort of distance
information (e.g., phylogenetic trees can be constructed for languages). In this case the
tree constructed may not be rooted.

The problem of constructing phylogenetic trees can be formulated in different ways.
The first one is to have a finite set of species or entities S = 8e11 0 0 0 1 en9, and a distance
matrix 4dij5i1 j∈61000n7 containing the pairwise distances between the entities. The problem
is to construct a tree, where the edges are labeled by distances and the nodes are labeled
entities (using new entities for the inner nodes). The tree is correct if for each two entities
ej1 ek from S, the distance in the tree (by summing up the edges distances along the path
connecting them) out of the ordinal set in the tree is djk. Trees can be constructed from
pairwise distances by variety of methods, including UPGMA (unweighted pair group
method using arithmetic averages) [39].

Another formulation of the phylogenetic tree construction problem is parsimony [17].
Here, one has a set S of sequences (DNA or protein), and a method for calculating
costs for relating any two sequences (not restricted to S). The task is then to find a
tree, where the leafs are labeled by elements of S and the inner nodes are labeled by
other sequences. Furthermore, the tree should have minimal costs according to the given
method (i.e., the sum of distances between any two sequences that are directly connected
in the tree should be minimal).

Since one, or in the case of parsimony several, optimal trees can be generated by tree
building algorithms, an approach such as the bootstrap method [16] is commonly used
to assess the significance of some phylogenetic feature and thus give some measure of
confidence for the tree.
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2.3. Structure Related Problems

2.3.1 Structure Prediction

Here one is concerned about the relation between sequence and structure. The sequence can
either be from a protein, in which case the problem is sometimes referred as the protein
folding problem; a more simple variant is that of RNA folding.

Now for natural protein sequences, the protein folds into one stable structure (which
is believed to be a structure where the free energy has a global minima), which is
completely determined by its amino acids sequence. This native structure determines the
function of a protein. Since it is very easy to determine the sequence of a protein, the
structure prediction problem consists of determining the structure from a given sequence.
This is one of the holy grails of bioinformatics, since protein structure prediction is a very
important but notoriously hard problem. It is subject of many ongoing attempts to solved
this problem by a variety of methods (see for example the CASP competitions [7], [37]).
Note that for artificial sequences, the sequence usually does not determine the structure
(i.e., the artificially designed protein will not fold to a stable structure in general).

Proteins have a high level of local organisation (called secondary structure), which
consist of �-helices, �-strands and turns. For this reason, there are approaches for pre-
dicting secondary structure, where the overall tertiary structure, as well as approaches
with try to predict tertiary structure directly. It is presently believed that protein structure
prediction cannot be done purely on the level of secondary structure alone.

A problem related to the protein folding problem is the inverse protein folding, which
consists of the following. Given a three-dimensional structure, generate a sequence that
will fold uniquely into the given structure. Naively, this can be solved using structure
prediction (generate a sequence, then predict the structure, and compare the result with
the given structure). Clearly, this problem is of interest for drug design, although inverse
protein folding is not used in drug design yet. The reason simply that the problem is
unsolved (see e.g. [22], where this problem is treatment for lattice proteins).

For RNA, secondary structure is usually related to base pair bonding, and structure
prediction is possible on this level (under some restrictions) taken into account thermo-
dynamical energies [46]. However, for another approach see [15] in this volume.

2.3.2 Protein Docking and Ligand Binding

Protein docking attempts to find the most stable mode of association between two protein
molecules, starting from the atomic coordinate of the two isolated components. It can
be likened to a ‘lock and key’ mechanism, where both lock and key are plastic, and
distort according to mutual interactions. The protein-protein interfaces are closely packed,
similar to protein cores. The aim of any docking algorithm is to optimise the surface
area and attractive forces and to minimise the loss of energy due to interaction with the
solvent. This is a difficult area of research, but there are general rules. Optimisation must
be performed on many degrees of freedom, since this is an example of 6-D problem of
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rigid body movement—3 translations and 3 rotations, all of which must be searched. The
approaches to rigid surfaces are broadly

1. Given the information of a pair of proteins crystallised together, to reconstruct the
docking

2. Given the individual proteins separately crystallised, to predict their docking requires
trying all combinations of degrees of freedom. Note that ligand binding—small
ligands tend to bind in big pockets; ligands are more flexible than proteins

2.4. Function Related Problems

2.4.1 Metabolic Pathways

Living organisms function by a complex set of interactions at the molecular level which
occur in a highly organised manner. They involve metabolic reactions which transform
some compounds (substrates) into others (products). In general a reaction S → P can
be described by a transition S → S ′ → P, transforming the set of substrates S into the
set of products P via a transition state S ′ in which the substrate molecules are distorted
into some electronic conformation which more readily converts to the products. In order
to occur, S → P has a negative free energy, i.e. the free energy of S is greater than
that of P; however S → S ′ has a positive free energy change, termed the energy of
activation. This energy is a barrier preventing S → P occurring spontaneously, without
which all reactions would occur in an uncontrolled way. Most reactions are catalysed by
special proteins called enzymes which control the reaction by lowering the energy barrier
(i.e. increasing the rate of flow). They do this by binding substrates at combining sites
within active sites, positioning substrate molecules in the most favourable orientations
for reactions to occur, as well as distorting them in order to favour transition state
formation. During this process the enzyme may change shape in order to induce a fit
with the substrate, rather than just rely on a rigid ‘lock and key’ mechanism. In general,
reactions can be chained together into paths so that the products of one reaction become
the substrates of another [13].

2.4.2 Regulatory Networks

Metabolic reactions can be regulated in two ways. The first is by the direct activation
or inhibition of activity of enzymes by small molecules. This method is relatively fast
in action, since it directly affects the chain of reactions. Another method of regulation
is that of transcriptional regulation, in which the production of the enzyme itself is
controlled by a transcription factor (a protein which activates the capacity of a gene to
produce another protein). This method is relatively slow, since it indirectly affects the
reaction path.

Reactions can be self-regulated using either the direct or transcriptional method, since
it is common that products of an immediate or eventual reaction act have a direct
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or transcriptional effect on enzymes involved earlier in the chain of reactions. These
regulatory relationships can be quite complex in that products from one path can regu-
late enzymes involved in another path.

3. Bioinformatics and Constraints

We now describe problem areas in bioinformatics, where constraints have been used
successfully, or where we think that constraints can be useful. The reader should note
that computing in bioinformatics is often data driven. Since the data is empirical it can
often be “dirty” and moreover the biologists who interpret the data in general will not be
able to classify the data cleanly. The effect of this is that the constraints used to describe
the data will have to reflect this by being stochastic or alternatively “soft” rather than
being “hard”; this will also have an effect on the design of the constraint solvers to be
used. However, some problems in bioinformatics can be formalised as pure optimisation
problems and do not require stochastic approaches.

3.1. NMR Structure Determination

When protein structure is determined by the NMR technique, then the result is not a
unique structure, but a set of data that can easily be interpreted as a set of distance
constraints. The problem of determining the structure from this data set is equivalent
to finding atom coordinates which are consistent with the given distance constraints.
Of course, there may be errors, which lead to inconsistent constraints. In this case, the
task is to find a (maximal) consistent subset as well. This is the problem handled by
the technique called “Distance Geometry” [9]. Distance geometry is also used for the
problem of homology protein modeling, where the distance constraints are obtained by
an alignment of the new sequence with templates of the known structure (see e.g. [24],
[23], [42], [40], [19]; for an overview on the subject see [43]). An alternative approach
for structure determination using threading techniques is given in [6]. A recent approach
using constraint solving techniques is given in [27].

3.2. Alignment and Threading

Sequence alignment and protein threading are both used in the case of homologous pro-
teins, where one of the sequences has a known structure, and one wants to know the
structure of the other sequence. In sequence alignment, only the sequences are investi-
gated in order to find conserved regions, whereas in protein threading the known structure
is also considered.

When considering multiple sequences, then the problem of aligning these sequences is
known to be NP-complete [28]. In [36], an integer linear programming (ILP) approach for
solving the problem has been described. This is of interest for the constraint community,
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since (1) an ILP-formulation is a special kind of constraint formulation, (2) it is also
interesting to integrate e.g. user defined constraint, where an ILP-formulation does not
work anymore. The latter approach has been described in [33].

In the case of protein threading, the problem is also known to be NP-complete [32],
where a branch-and-bound approach for solving this problem was introduced. It is even
hard to approximate the problem, as shown in [1]. Constraint optimization could be used
for a more efficient algorithm, or for integrating user-defined constraints as it is done in
multiple sequence alignment.

3.3. Protein Structure Prediction, Protein Docking

The problem of ab initio structure prediction is described as follows: Given a sequence
of amino-acids, what is the native structure this sequence will have? Since the problem is
very important, but very hard (for NP-completeness results see e.g. [34], [41]), there are
a lot of different formulations of this problem. For the constraint community, simplified
models are of special interest. There is a huge variation of simplified models.

The first class are the off-lattice models, where one describes a backbone conformation
(i.e., the positions of the C� atoms, the N atoms of the amino groups, and the C atoms
of the carboxy groups) as a combination of �-angles (i.e., the rotation angles between N
and C� atoms) and �-angles (i.e., the rotation angles between C� and N atoms). Since
there are preferred combinations of �1�-angles, a discrete set of combinations are used
in the off-lattice models. For finding the minimal energy model, one can span the search
tree over all possible combinations. Constraints can be used to cut of the search tree, as
it is done in the Geocore system of Yue and Dill [45].

The other class consist of the lattice models, where the positions of the amino acids are
positions in a regular lattice. Here, constraints have been already been successfully used
for the cubic lattice model. Even for the simplest lattice model (Dill’s HP-model [30]),
the problem of finding the conformation has been shown to be NP-complete in two
dimensions [8] and in three dimensions [5].

Protein docking uses algorithms to optimise the surface area and attractive forces and
to minimise the loss of energy due to interaction with the solvent. To the best of our
knowledge there has been no work which has attempted to apply constraint optimisation
techniques to protein docking, and thus this difficult area is one which should be seen
as a challenge to the constraint programming community.

3.4. Metabolic Pathway Analysis

Although data about reactions has been available for some time, the recent flood of
information about the genome, transcription to proteins and protein structure has made
this area one of the ‘hot topics’ in bioinformatics. Overall, metabolic pathways and their
associated regulatory networks are complex, since they can describe the functioning of
entire organisms, and are often represented as graphs; the amount of data involved can be
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very large. The types of analysis performed can range from simulation of the reactions
and calculation of the quantities of substrates and products, to a topological analysis of
the patterns of connectivity (reactions and regulation) within and between pathways.

Some questions which could be addressed by such an analysis might include the
number of pathways, and how many steps within each pathway, which lead from one
compound to another, those pathways that contain or lack specified compounds, and
identifying those paths which may be affected when one or more genes or proteins are
turned off or are missing. At a more general level, there is a need to compare biochemical
pathways from different organisms and tissues in terms of both common features and
differences. Pathway reconstruction aims to predict elements which are missing from
experimental data; indeed data in pathway databases can be annotated with different
levels of certainty, ranging from empirical to that computed from other data (e.g. protein
structure as predicted from sequence data).

Constraints have not yet been used in any large scale for in the area of metabolic
pathways, unlike in chemistry [26], but could be used to describe patterns in the graphs
(for example constraints over the number of nodes that a metanode in a pattern may
represent), or as part of the equations describing the chemical reactions.

3.5. Patterns and Databases

The amount of data now available to researchers working in the field of bioinformatics is
not only large, but also increasing rapidly at a great rate. This situation has arisen due to
advances in the technology associated with data collection; the need is now to analyse
this data.

One approach is to induce or learn patterns or rules (i.e. constraints) from bio-data.
Because such data is often “dirty” and in any case describes populations whose individu-
als vary in some or all of their attributes, stochastic constraints will often be appropriate;
alternatively pattern languages which describe disjunction can be used to describe clus-
tered observations. If the objective is to discover classifying patterns1 then learning must
be over negative as well as postitive examples, implying that some form of negation
needed—in general this is hard. The challenge for the constraint community is to rival
the approaches that have been well established in this field, including Hidden Markov
Models and stochastic grammar (see [2], [12]).

Furthermore, one important source of data are scientific texts, and there is now a great
deal of interest in extracting high-level information from large sets of such texts. The
combination of constraint–based induction and textual analysis is likely to be a very
fruitful area in the future.

4. Conclusions

The speed at which data collection is being made is indeed impressive if not somewhat
daunting—for example the first pass at sequencing of the human genome has been com-
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pleted in the summer of 2000. Thereafter, of course, effort will be put into sequencing
different populations and also individuals.

In general we expect that the emphasis on research in sequencing will decrease whilst
research on sequence analysis (e.g. gene finding and annotation) will increase. Also we
predict that there will be an increase in the research emphasis on structure and function-
related topics, and that research in the area of metabolic pathways will become very
active.

Overall there will be an increasing need for computer scientists to be involved in
the way in which the large volumes of data generated in the bioinformatics field will
be manipulated, presented and reasoned about; this in itself will create new research
problems.

Some tips to bear in mind for computer scientists who are considering getting involved
in bioinformatics are:

• Work alongside with molecular biologists otherwise as a computer scientist the danger
is that you design the solution to a problem, neither of which have any relevance to
the community.

• There are a lot of problems out there in bioinformatics which look fun to tackle, but
do check out what has been done before by people from the biological sciences.

• You will need to carefully and rigorously test any systems that you develop and this
will have to be done with scientists who can interpret the results—i.e. people from
the biological sciences. Since the Web is heavily used to deliver applications in the
bioinformatics community, be prepared to interface your system to the Web.

• The bottom line is that biologists are interested the speed of solutions, and are used to
systems delivering results which are not ‘black-and white’ (i.e. trading off coverage
against accuracy) from dirty data. If your system is slower than the one they already
have then you will have to convince them of its extra functionality, but don’t expect
that they will appreciate its declarative nature, at least at first.

Our experience has convinced us that constraint programming can be used for real on
these large and challenging problems, and if you find the area interesting, then do go
for it!

Resources

European Bioinformatics Institute: www.ebi.ac.uk

National Center for Biotechnology Information: www.ncbi.nlm.nih.gov

Protein Data Bank: www.rcsb.org/pdb

Swiss-Prot Database: www.expasy.ch/sprot/sprot-top.html

CATH Database of Folds: www.biochem.ucl.ac.uk/bsm/cath

SCOP Database: scop.mrc-lmb.cam.ac.uk/scop

DALI: www2.ebi.ac.uk/dali
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Structural Genomics: www.structuralgenomics.org

3D Search: gene.stanford.edu/3dsearch

Bioinformatics course: cmgm.stanford.edu/biochem201

The Bioinformatics Resource: www.hgmp.mrc.ac.uk/CCP11

Pattern discovery: industry.ebi.ac.uk/brazma/patterns.html

Metabolic: www.ebi.ac.uk/research/pfmp
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