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Abstract

The protein structure prediction problem is one of the most important prob-
lems in computational biology. Because of the complexity of this problem, sim-
plified models like Dill’s HP-lattice model [9, 10] have become a major tool for
investigating general properties of protein folding. Even for this simplified model,
the structure prediction problem has been proven to be NP-complete [4, 2].

A disadvantage of the HP-problem is its high degeneracy. L.e., for every se-
quence there are a lot of conformations having the minimal energy. For this
reason, extended alphabets have been used in the literature. One of these alpha-
bets is the HPNX-alphabet [3], which considers hydrophobic amino acids as well
as positively and negatively charged ones.

In this paper, we describe an exact algorithm for solving the structure pre-
diction problem for the HPNX-alphabet. To our knowledge, our algorithm is the
first exact one for finding the minimal conformation of an lattice protein in a
lattice model with an alphabet more complex than HP.

1 Introduction

The protein structure prediction is one of the most important unsolved problems of
computational biology. Many results in the past have shown the problem to be NP-
hard. But the situation is even worse, since one does not know the general principles
why natural proteins fold into a native structure. E.g., these principles are interesting
if one wants to design artificial proteins (for drug design). For the time being, one
problem there is that artificial proteins usually don’t have a native structure (i.e.,
there is no stable structure that will be achieved by the protein).

To attack this problem, simplified models have been introduced, which became a
major tool for investigating general properties of protein folding. An important class of
simplified models are the so-called lattice models. Some commonly used simplifications
in this class of models are 1.) monomers (or residues) are represented using a unified
size; 2.) bond length is unified; 3.) the positions of the monomers are restricted to
positions ; and 4.) a simplified energy function.

There are different lattices. The simplest used lattice is the cubic lattice, where
every conformation of a lattice protein is a self-avoiding walk in Z3. A discussion
of lattice proteins can be found in [5]. There is a bunch of groups working with
lattice proteins. Examples of how lattice proteins can be used for predicting the native
structure or for investigating principles of protein folding are [13, 1, 6, 8, 7, 11].

An important representative of lattice models is the HP-model, which has been
introduced by [9, 10]. In this model, the 20 letter alphabet of amino acids (and the
corresponding manifoldness of forces between them) is reduced to a two letter alphabet,
namely H and P. H represents hydrophobic amino acids, whereas P represent polar or
hydrophilic amino acids. The energy function for the HP-model states that the energy
contribution of a contact between two monomers is —1 if both are H-monomers, and
0 otherwise. Two monomers form a contact in some specific conformation if they
are not connected via a bond, but occupy neighbor positions in the conformation. A



conformation with minimal energy is just a conformation with the maximal number
of contacts between H-monomers. Just recently, the structure prediction problem has
been shown to be NP-complete even for the HP-model [2, 4].

An example of the use of lattice models is the work by Sali, Shakhnovich and
Karplus [13]. The same lattice model is used by several other people, e.g., [1, 7].
The authors investigate in [13] under which conditions a protein folds into its native
structure. For this purpose, they have performed computer simulations of protein
folding on 200 proteins in the cubic lattice. The simulation of protein folding was done
by using a Monte Carlo method. A protein was defined to be foldable if the Monte
Carlo method finds the minimal energy (= native) structure. The authors have found
that a protein folds if there is a energy gap between the native structure and the energy
of the next minimal structure.

In performing such experiments, it is clear that the quality of the predicted principle
depends on several parameters. The first is the quality of the used lattice and energy
function. The second, and even more crucial point, is the ability for finding the native
structure. For the energy function used by [13], there is no ezact algorithm for finding
the minimal structure. To be computational feasible, they have restricted in [13] the
search for the native structure on the 3 x 3 x 3-cube. But this approach has some
drawbacks: 1.) The energy function had to be biased to a mean hydrophobicity in order
to get proteins whose native structure is on the 3 x 3 x 3-cube with high probability
(see [13]); 2.) even then, it is not guaranteed that the minimal conformation is on this
cube 3.) the length of the proteins cannot be arbitrarily chosen.

Since there is an algorithm for finding the native structure on the HP-model, one
could think of redoing the experiment using the HP-model. But the HP-model has
the problem that its degeneracy (i.e., the number of structures of a sequence that
have minimal energy) is large [5]. Hence, there is no dedicated native structure. But
this implies that the HP-model is not suited for these experiments. For this reason,
extended models such as the HPNX-model [3] have been introduced, which we are
considering in this paper. The HPNX-model is an extension of the HP-model where
the polar monomers are split into positively charged (P), negatively charged (N) and
neutral (X) monomers. The energy function of the HPNX-model is given by the matrix

H|P|N|X
H[-4[0 |00
PO |1 ][-1]0 (1)
N[O |—-1| 10
X[oo 0

2 Structure Prediction as a Constraint Problem

Let s = s1...s, be an HPNX-sequence of length n. We say that a monomer with
number ¢ in s is even (resp. odd) if i is even (resp. odd). For convenience, we talk of
a PNX-monomer meaning either a P, N or X monomer. With || — 7|, we denote the
Euclidean distance between p and p'. A conformation ¢ for this sequence is nothing
else but a function ¢ : [1..n] — Z3 assigning vectors to monomers such that

1. for all 1 <4 < n we have ||c(i) —c(i +1)|]| =1

2. and for all ¢ # j we have ¢(i) # ¢(j) (the conformation c¢ is self-avoiding).

Given a conformation ¢ of a sequence s and two monomers i and 7 with i +1 < j, then
i and j form a contact in c if ||c(i) — c(j)|| =1

With &, €, and €. we denote the unit vectors (1,0,0), (0,1,0) or (0,0,1), respec-
tively. We say that two points p,p' € Z* are neighbours if || — p'|| = 1. This is
equivalent to the proposition that p' = ' £ € with € € {&,,€,,é,}. Given a confor-
mation ¢, the H-surface HSurfs(c) of ¢ is defined as the number of pairs of neighbour



positions, where the first is occupied by an H-monomer, but the second not. Le.,

HSurf,(c) = H @‘ A vj Zi\lgp;cc((;gu#zﬁ)l H

Now Yue and Dill [14] made the observation that there is a simple linear equation
relating H-surface and the number of HH-contacts of ¢ (denoted by HHContacts(c)).
This equation uses the fact that every monomer has 6 neighbours in the Z3, each of
which is in any conformation either filled with either an H-monomer, a PNX-monomer,
or left free. Let ny(s) be the number of H-monomers in s, then we have for every
conformation ¢ that

6-np(s) = 2-[HHContacts(c) + HHBondss] + HSurf,(c) (2)

where HHBonds; is the number of bonds between H-monomers (i.e., the number of
H-monomers whose successor in s is also a H-monomer). Since HHBonds; is constant
for all conformations ¢ of sequence s, this implies that minimizing the surface is the
same as maximising the number of HH-contacts.

Given a conformation, the frame of the conformation is the minimal rectangular box
that contains all H-monomers of the sequence (see [14]). Given a vector p, we denote
with (p)x, (P)y and (p), the x-,y- and z-coordinate of 7, respectively. The dimensions
(fra, fry, fr.) of the frame are the numbers of monomers that can be placed in x-, y-
and z-direction within the frame. IL.e.,

fro = max{|(c(i) —c()x| |1 <4, <nAs;=HANs; =H}+ 1.

fry and fr, are defined analagously. We define s, to be min{c(i)x | 1 <i,j <nAs; =
H}. sy and s are defined analogously. (sz, Sy,5-) is called starting point of the frame.

2.1 Basic Constraints and Search Algorithm

We start with the basic constraint formulation that underlies our search algorithm.
Our algorithm is based on constraint optimization, which is the combination of two
principles, namely generate-and-constraint with branch-and-bound. For using con-
straint optimization, we have to transform the structure prediction problem into a
constraint problem. A constraint problem consists of a set of variables together with
some constraints on these variables. In the following, we fix a sequence s of length n.

Now we can encode the space of all possible conformations for a given sequence as
a constraint problem as follows. We introduce for every monomer i new variables X;,
Y; and Z;, which denote the x-, y-, and z-coordinate of ¢(i). Since we are using a cubic
lattice, we know that these coordinates are all integers. But we can even restrict the
possible values of these variables to the finite domain [1..2n].} This is expressed by
introducing the constraints

X € [1.(2-n)]AY: € [1.(2-0)] A Z; € [1.(2-n)] (3)

for every 1 < i < n. The self-avoidingness is just (X;,Y;, Z;) # (X;,Y;,Z;) for i # j.Next
we want to express that the distance between two successive monomers is 1, i.e.

1(Xi, Yi, Zi) — (Kig1, Yip1, Zip)|[ = 1

Although this is some sort of constraint on the monomer position variables X;,Y;, Z;
and X;41,Yi+1,Zi41, this cannot be expressed directly in most constraint programming
languages. Hence, we must introduce for every monomer i with 1 < i < n three

'We even could have used [1..n]. But the domain [1..2n] is more flexible since we can assign
an arbitrary monomer the vector (n,n,n), and still have the possibility to represent all possible
conformations.



variables Xdiff;, Ydiff; and Zdiff;. These variables have values 0 or 1. Then we can
express the unit-vector distance constraint by

Xdiff; = [X;—Xjp1|  ZAiff; = |Z; — Zig|
Ydiff; = |Y¥; — Yipi] 1 = Xdiff; + Ydiff; + Zdiff;.

The constraints described above span the space of all possible conformations. I.e.,
every valuation of X;, Y;, Z; satisfying the constraints introduced above is an admissible
conformation for the sequence s, i.e. a self-avoiding walk of s. Given partial informa-
tion about X;,Y;,Z; (expressed by additional constraints as introduced by the search
algorithm), we call a conformation ¢ compatible with these constraints on X;,Y;,Z; if ¢
is admissible and ¢ satisfies the additional constraints.

But in order to use constraint optimization, we have to encode the energy function.
For HP-type models, the energy function can be calculated if we know for every pair
of monomers (i,j) whether ¢ and j form a contact. For this purpose we introduce
for every pair (i,7) of monomers with i + 1 < j a variable Contact; ;. Contact;;
is 1 if 4 and j have a contact in every conformation which is compatible with the
valuations of X;, Y;, Z;, and 0 otherwise. Then we can express this property in constraint
programming as follows:

Xdiff;; = [X; — X, Zdiff;; = |Z; — Zj]
Ydiff;; = [V; — Y] Contact;; € {0,1}
(Contact; ; = 1) > (Xdiff; + Ydiff; + Zdiff; = 1) (4)

where Xdiff; ;, Xdiff; ; and Zdiff;; are new variables. The constraint (4) is called
a reified constraint, and can be encoded directly in many modern constraint program-
ming languages. Using the variables Contact; ;, we can now easily encode the en-
ergy function, which is subject to constraint optimization. We introduce the variables
HHContacts, PNContacts, PPContacts and NNContacts, which count the number of
contacts between monomers of the specified type. Thus, HHContacts is defined by

HHContacts = Zi+1<j/\s(i)=H/\s(j)=H Contact; ;.

The variables PNContacts, PPContacts and NNContacts are defined analogously. Fi-
nally, we can now define a variable Energy, where we have the constraint

Energy = —4-HHContacts — PNContacts + PPContacts + NNContacts.

Thus, we have encoded self-avoiding walks together with a variable Energy. Now we
can describe the search procedure, which is a combination of generate-and-constraint
and branch-and-bound. In a generate step, an undetermined variable var out of the set
of variables {X;,Y;,Z; | 1 <i < n} is selected (according to some strategy). A variable
is determined if its associated domain consists of only one value, and undetermined
otherwise. Then, a value val out of the associated domain is selected and the variable
is set to this value in the first branch (i.e., the constraint var = val is inserted), and
the search algorithm is called recursively. In the second branch, which is visited after
the first branch is completed, the constraint var # val is added.

Each insertion of a constraint leads through constraint propagation to narrowing of
some (or many) domains of variables or even to failure, which both prune the search
tree by removing inconsistent alternatives. Thus, the search is done by alternating
constraint propagation and branching with constraint insertion. The generate-and-
constraint steps are iterated until all variables are determined (which implies, that
a valid conformation is found). If we have found a valid conformation ¢, then the
constraints will guarantee that Energy is determined. Let E. be associated value of
Energy. Then the additional constraint

Energy < E. (5)



is added, and the search is continued in order to find the next best conformation,
which must have a smaller energy than the previous ones due to the constraint (5).
This implies that the algorithm finally finds a conformation with minimal energy.

At every node n of the search tree, we call the set of constraints introduced by the
search algorithm so far the configuration at node n. Every conformation that is found
below node n in the search tree must be compatible with the configuration at n, and
vice versa. A bounding function for Energy is a function that takes a configuration of
some node n, and yields some value E, where every conformation compatible with the
configuration of n has an energy greater than FE.

Clearly, the above described constraint problem generated from a sequence s is not
sufficient to yield an efficient implementation. For efficiency, one needs 1.) effective
constraints that allow early elimination of invalid configurations, and 2.) the ability
for implementing a search strategy that tends to enumerate low energy conformations
first.

2.2 Additional Variables and Constraints

We start with defining the additional variables used in our formulation. With (Frx, Fry,Frz),
we denote the dimension of the frame. In [14] it is shown, that setting the frame di-
mension first allows to exclude many conformations having a non-optimal number of
HH-contacts. Clearly, one has to search through different frame dimensions to find the
optimal conformation in general. By using the lower bound of the H-surface given the
sequence and the H-frame dimensions as defined in [14], one usually needs to search
through a tiny number of frame dimensions to find the optimal conformation.

Hence, we start with setting the frame dimension (Frx,Fry,Frz). If these variables
are determined, we fix the frame starting point.? Having this, we can add for every
H-monomer ¢ the constraints s, < X; < s, +Frx—1, sy, <Y; < s, +Fry—1 and
s, <Z;<s,+Frz—1.

The remaining variables consider the different positions that a monomer can occupy.
For simplifying the description in this paper, we will assume that we consider every
position in [1..(2-n)] x [1..(2-n)] x [1..(2 - n)], and that every monomer can (initially)
occupy every position. With fixing the frame, this is not true, since many monomers
can only be placed onto a restricted set of positions. We have used this optimisation
in our implementation, but skip it here for simplicity of presentation.

The first set of variables is related to planes parallel to the ones of the coordinate
axis. An z-layer is a plane defined by the equation x = ¢ for some integer c. y-layers
and z-layers are defined analogously. For the membership of monomers to layers,
we introduce additional Boolean variables. For every monomer ¢ and every integer
1 < ¢ < 2-n, we introduce a variable Elem;"“. Elem;” is 1 if the monomer is in the x-
layer defined by # = ¢.> Thus, we have the reified constraint (Elem!“ =1) = (X; = c).
The distribution of monomers to x-layers is restricted by the following constraints valid
for the cubic lattice. If two monomers ¢ and i + 2 are in the same x-layer, then i + 1
and must also be the same x-layer. Le., for every 1 < ¢ < 2-n we have

(Elem;“ =1 AElem, =1) — (Elem}} =1)
If two monomers i and i + 3 are in the same x-layer, then 7 + 1 and i + 2 must also be
in one x-layer. lL.e., for every 1 < ¢ < 2-n we have

(Elem; = 1AElemj3 =1) — Xiy1 =Xt

We treat y-layers and z-layers analogously.
Finally, we have variables related to positions that can be occupied by monomers.
Let p'= (ps, py, p-) be some position and i be a monomer. The occurrence variable 0f is

2this can always be done in a way which is compatible with (Frx,Fry,Frz) and the constraint (3)
3We do not have to consider all pairs of i, c in reality since the frame is fixed first.



a Boolean variable that is 1 if the monomer 7 occupies the position p, and 0 otherwise.
This variable can be defined by

(0f =1) « (Elem]”" =1AElem” =1AElem; " =1).

With the constraint (Elgign Df) < 1 we guarantee that every position may be occu-

pied by at most one monomer.

Since the major part of the search tree is spanned over all possible assignments
of monomers to positions, it is important to exclude invalid assignments as soon as
possible. We do this by relating the different occurrences of neighbor positions. For
every positions p and every monomer 1 < i < n, we introduce the constraint

(07 =1) = (El;’ neighb of p Df+1) >1 and (07 =1)— (El;’ neighb of p Df—1) > 1.

For i = 1 we introduce only the first constraint, for i = n only the second. This
constraint just states that ¢ can only occupy the position p'if both monomers i — 1 and
i+ 1 occupy a neighbor position of p. This generalize the concept of the tether length
as introduced in [14] and extended in [15], which only states which H-monomers can
occupy which positions in the H-frame, not taking into account where the neighbor
monomers can be placed. Thus, our constraint prunes the search tree given partial
distribution of monomers to positions, which is not true for the tether constraint.

The final set of constraints relates occurrence variables and the energy variable
in various ways. For every position p, we introduce the Boolean variables Htypey,
Ptypey, Ntypey and Xtypey. These variables are 1 if the positions are occupied by an
H-monomer of the corresponding type. Thus, Htype; is defined by

(eypey =1) o ((Ticicnneen 07) > 1)

Ptype;y and Ntype; are defined analogously, but we need a special definition for Xtypey,
since a position has X-type if it is occupied by an X-monomer, or not occupied by a
monomer at all. This condition and the condition that a position has a unique type is
expressed by the following two constraints:

(Xtypey =1) <« (Htypey + Ptypes + Ntypey = 0)
1 = Xtypey+ Htypey + Ptypes + Ntypey

Additionally, we have }_;Htypey = nu(s), >_;Ptype; = np(s) and 3 ;Ntypey =
nn(s), where ng(s), np(s) and ny(s) is the number of H-, P- and N-monomers in s,
respectively.

Finally, we have constraints relating the type variables of positions and H-surface
contributions. As already mentioned, the number of HH-contacts can be more eas-
ily approximated from the surface of all H-surface. Thus, we introduce the Boolean

variables HSurfg.’ for all neighbor positions p and 1;7 , which is defined by HSurfg.’ =

(Htypey; = 1 A Htype; = 0). Of course, we get HSurf = Eﬁ,ﬁ neighbours HSurfg. The
variable HSurf is then used to constrain the variable Energy as described by equation 2.

Search Strategy As the first step, we search the maximal number of HH-contacts
that is possible for the sequence s. Once we have found the maximal number m of
HHContacts, we start with finding a conformation with m HHContacts that maximizes
PNContacts — PPContacts — NNContacts. The next step is to decrease HHContacts to
m — 1, and to restart the search for the conformation which maximizes PNContacts —
PPContacts — NNContacts. Since one HH-contact correspond to 4 PN-contacts, and
since (by branch and bound) we need to find a better conformation, this implies that
we need to find a conformation where at least 5 more PN-contacts, which does not



exist in many cases. But this case may not be excluded for completeness, which shows
that it is not enough to search through all minimal conformation of the corresponding
HP-sequence.

Within the major search steps described above, we select the variables according
to the following order.* First, we determine the frame dimensions Frx, Fry, Frz. After
that, we determine the x-values of the H-monomers. This allows one to apply the lower
bound on HSurfy, which is in fact an upper bound on HHContacts. This is described
in the next section. Finally, we determine the positions of the monomers.

2.3 Lower Bound on HHContacts

For every x-layer defined by the equation x = k, we define the variables Lseh; and
Lsohy, counting the number of even and odd H-monomer in that layer. In order to
apply the lower bound, we have fix these numbers. A way to achieve this is to fix
an assignment of H-monomer to x-layers (which implies that the the variable X; is
determined for every i with s; = H), as it is done by our search strategy.

Let ¢ be some conformation of s. We now distinguish between surface contribution
in x-direction, and surface contributions in the single x-layers (i.e., contributions in y-
and z-direction). For this purpose, we define

HSurf*(c) = H (c(i),ﬁ)‘ N i{;pi(?) f EC(i)Zié’z H
om0 = [{ o |, g TN )

where Htypez(c) is defined by Htypeg(c) =1 & i : (s; = H A c(i) = p). Clearly, we
have HSurf,(c) = HSurfy(¢) + > c4<o.p, LayHSurf(*=" (¢).

Given a point (z,y,z) € Z3, we say that (z,y,z) is odd (resp. even) if & +y + z is
odd (resp. even). We write (z,y,z) = (', ¢,z ) iff e +y+2=2"+y' + 2’ mod 2.

Proposition 2.1 Let ¢ be a conformation of s. Then ¢(i) = ¢(j) iff i = j mod 2.

From this we get the following lower bound on HSurf¥(c), provided that we know
how many even and odd monomers are placed on the jt* layer. It is easy to see that
the Lsoh; monomers generate Lsoh; surface points in —x direction. Furthermore, there
are Lsoh; points in +x direction, which are candidates for surface points. But all these
candidates are even points. If Lsoh; > Lsehs, then we have minimal Lsoh; — Lsehy
surface points in the second layer. If Lsoh; < Lsehy, then a similar argumentation
shows that we have at least Lsehy — Lsoh; surface points in the first layer.

Lemma 2.2 Let ¢ be a conformation of s, and let (Lsoh;,Lsehy,... ,Lsohs,, Lsehsy,,)
be the number of H-monomers of c¢ that are placed in the different layers. Then
HSurf (¢) > Lsoh; + Lseh; + Lsohay, + Lseha,, + 3_, 5, [Lsoh; — Lseh|

For calculating the yz-surface of a specific layer, we introduce the concept of a
coloring. A coloring just states which points are occupied by some H-monomer. A
coloring is a function f : Z2 — {0,1}. We say that a point (z,y) is colored black by
fiff f(z,y) = 1. In the following, we consider only colorings different from the empty
coloring f, (which satisfies Vp': f.(p) = 0). Given a coloring f, define

e(f) = H(@y)| f(z,y) =1and z +y even}|
o(f) = H(zy)| flz,y) =1and z +y odd}|
ColSurf(f) = |{(p,7) € Z* | p,p' neighbours Af(p) =0A f(7') =1}

4We present only an oversimplified description of the search strategy for clarity of presentation;
the implemented strategy is much more complex in the way the single variables are selected



ColSurf(f) is called the surface of f. Given a pair (e, 0) of integers, we define ColSurf(e, o)
to be the minimum of {ColSurf(f) | f colouring with e(f) = e Ao(f) = o}. The next
lemma relates the surface of colorings with the yz-surface of a conformation.

Lemma 2.3 Let ¢ be a conformation of s having Lseh; even (resp. Lsoh; odd) points
in the j'" x-layer. Then LayHSurfgx:j) (¢) > HSurf(Lseh;, Lsoh;)

Thus, Lemma 2.2 together with Lemma 2.3 provide a lower bound on the surface.
Since ColSurf(e,0) = ColSurf(o, e), it is sufficient to treat the case where ¢ < 0. In the
following theorem, we handle the simple case where |e — o] < 1.

Theorem 2.4 Let (e,0) be a pair of integers with |e —o| < 1. Leta = [\/e+ o0 | and
b= [<£2]. Then ColSurf(e,0) = 2a + 2b.

The remaining case is to calculate ColSurf(e, 0) where e < 0—1, without the need to
search through all possible colorings f. A point (z,y) € Z?is a caveat in f if (z,y) =0
and (z,y) is contained in the hull (over Z?) of the points colored black in f. We handle
only caveat-free colorings in this paper. The case of a coloring with caveats can be
reduced to the caveat-free case.

Given a coloring f, we denote with the frame (a,b) the maximal dimension of the
coloring in y- and x-direction. Since we are considering caveat-free colorings, we get
that the surface of f is 2-a + 2 -b, where (a,b) is the frame of f. Hence, we can
calculate the surface of (e,0) by finding a minimal frame (a,b) such that there is a
coloring of (e,0) having this frame. The first condition is clearly that a x b > e + o.
This condition is exactly the case that is treated in Theorem 2.4. But in the case that
we have e < o — 1, this condition is not sufficient. The reason is that given a fixed
frame (a,b), it may well be that we can color e + 1 even and o odd points in the frame
(a,b), but not e even and o odd. E.g., consider a fixed frame of size (4,4). Grey points
indicate even points, black ones odd points. We define d(f) = o(f) — e(f). Then three
maximal colorings for different values of d(f) are

N XN ) Te0e P
cece cece
d(f)=0 d(f)=2

If we have the same number of even and odd points (d(f) = 0), then we can color at
most 16 points in that frame. If d(f) = 2, then we can color at most 14 points. But if
d(f) = 3, we can color at most 11 points, because we have to remove one odd position
(e.g. p) before we can reduce the number of even positions. This leads to the following
definition. The partial order < on caveat-free colorings is defined by f < f’ if and only
if height(f) = height(f"), length(f) = length(f’) and d(f) = d(f’).

Now we have f < f' implies that f, f" have the same surface. The nice thing is
that <-maximal colorings have a simple normal form, from which d(f) can easily be
read off. An example of such <-maximal coloring (called simple coloring) f is

Again, we use black beads for odd positions colored by f, and grey for even. (a,b)
is the frame of f, and 41,...,i4 are the side length of triangles excluded at the cor-
ners. The tuple (a, b,i1,12,13,74) is called the characteristics of this coloring (here it is
(10,12,2,3,3,4)).



Theorem 2.5 FEvery coloring can be extended to a simple coloring with the same sur-
face. Let f be a simple coloring with characteristics (a,b,i1,1i2,13,14). Then ColSurf(f) =
2a + 2b. Furthermore, we have

e(f) +o(f) =axb— Y5 HHH and d(f) = btiafiatis 4

This can be used for calculating ColSurf(e, o) as follows. We start with the minimal
frame (a,b) for e + o as stated in Theorem 2.4. Then we search for numbers i1, is, 3,4
satisfying the above constraints. Note that we do not have to search through all
possible numbers for iy,i2,i3,i4, since Lemma B.10 gives a good restriction on the
possible characteristics of maximal colorings. If we find an appropriate valuation for
i1,142,13,14, then the ColSurf(e, 0) is given by 2a + 2b. Otherwise, we have to search for
the next bigger frame.

2.4 Bound on the PN-Energy

The PN-Energy is —PNContacts+PPContacts+NNContacts. To get a lower bound on
this energy, we need an upper bound on PNContacts and lower bounds on PPContacts
and NNContacts. We need some additional variables and constraints.

For an upper bound on the PNContacts, we have to count the number of N-
neighbours of positions, which are occupied by a P-monomer (or equivalently, the
number of P-neighbours of position occupied by an N-monomer). For this purpose, we
introduce for every position j Boolean variables PNcons%. . .PNconsg.. PNcons% is true
if p'is occupied by a P-monomer, and has exactly i neighbour position occupied by an
N-monomer. This is defined by the following reified constraint:

(PNcons% =1) < (Ptypey =1)A (Nneighs; =1),
where Nneighs; is an integer variable with 0 < Nneighs; < 6, which is defined by
Nneighsy = Zﬁq neighbour of 5 NEYPey - Analogously, we define the variables NPcons%,
NNcons%, and PPcons..

Now we can get an upper bound for PNContacts using the following consideration.
We count in the variables NumPNcons?, ... , NumPNcons® the number of positions occu-
pied by a P-monomer, that have 0, ... ,6 N-neighbours, respectively. This is defined
by NumPNcons® = Eﬁ PNcons%. Note that in some configuration con at some specific
search step, not all position types will necessarily be determined. Thus, it is clear
that NumPNcons® has a range associated. E.g., we could have a configuration where
NumPNcons® = 0, NumPNcons® = [0..1], NumPNcons® = [0..2], NumPNcons® = [0..2], and
so on. For a sequence s containing 4 P-monomers, we could now derive that the best
conformation compatible with this configuration can have 1 P-monomer occupying a
position with 5 N-neighbours, 2 P-monomer occupying positions with 4 N-neighbours,
and the last one occupying a position with 3 N-neighbours. This gives an upper bound
of 16 PN-contacts. Note that the more position types are determined (using the con-
straints), the smaller the ranges get, and henceforth the better the upper bound will
be.

Theorem 2.6 Let con be a configuration, where [b;...t;] is the range associated to
the variable NumPNcons!. Let np(s) be the number of P-monomers in s. Let k be the
smallest number such that ), t; > np(s). ThenUpn = ) ;o (it:) — k(D ;o p ti —tk)
is an upper bound on PNContacts for every conformation compatible with con.

Analogously, we get an upper bound on PNContacts using NumNPcons’, and lower
bounds on PPContacts (resp. NNContacts) using NumPPcons' (resp. NumNNcons®)
(where we start with the lowest neighbour number 0 instead of the highest 6).



3 Results

We have implemented the above described constraints and bounding functions in the
constraint programming language Oz 2.0 [12]. We investigate a set of test sequences
as shown in Table 1. We select 5 HPNX-sequences and show them together with their
corresponging HP-sequences, since we intend to compare the results of the HPNX-
sequences with the ones of its HP-sequence. The HP-sequences Slhp through S5hp
were treated by [14] before, where they are named L1,...,.L5. The algorithm finds
the native structure of all sequences listed in Table 1. It is optimized for the search
of one best conformation, but we are also able to determine and count all optimal
conformations (see Table 2 for detailed results). When comparing the degeneracy
of the HPNX-sequences with the corresponding HP-sequences, one can see that the
degeneracy is usually strongly reduced in the HPNX-model (except for S4, due to its
high percentage of H-monomers). But further, it shows that our algorithm for finding
best HPNX-conformations performs significantly better than an algorithm, wich had
to go through all HP-optima.
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A Tables of Results

S1 HXXNNHHHHXPHXHXHHHNHPPHHXPH Sthp HPPPPHHHHPPHPHPHHHPHPPHHPPH

S2  HXNNHHHHXHXHHNXNHXHHNHPPXHP S2hp HPPPHHHHPHPHHPPPHPHHPHPPPHP

S3  HPHHNXHHPNHHHHXXXHXPXHHHPXH S3hp HPHHPPHHPPHHHHPPPHPPPHHHPPH

S4  HHXHHPHHXHHHHHHPNHHHHHPNHHHHHHH S4hp HHPHHPHHPHHHHHHPPHHHHHPPHHHHHHH

S5  XHXNHXXHNPHXXHPXHXXHXNHPXHNXHPXHXPHX | S5hp PHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHP

Table 1: Test sequences

Search Steps  Search Steps HPNX HP
Sequence | Best HPNX All HP Degeneracy Degeneracy
S1 14402 167662 61 37244 °
S2 733 2998 4 297
S3 411 155693 195 25554
S4 46 11036 1023 1114
S5 1629 55086 16 3528

Table 2: Results

B Proofs for the lower on HHContacts
Let f be some coloring. With min, (f) we denote the integer
min{z €Z |y €Z: f(x,y) =1}.
max,(f), min,(f) and max,(f) are defined analogously. Furthermore, we define

length(f) =
height(f) =

max, (f) — min, (f) + 1
max, (f) — min, (f) + 1.

The pair (height(f),length(f)) is called the frame of f. We say that a point (z,y) € Z2
is within the frame of f if min, (f) < z < max,(f) and min,(f) <y < max,(f). Given
1 <i < height(f), then the it" row (denoted (row(i, f))) is the coloring r defined by

o= { {0 =i

Furthermore, we define

indent; (i, f) =
indent,.(i, f) =

min, (row(i, f)) — min, (f)

max, (f) — max,(row(i, f)).

For a row r = row(i, f) with 1 < ¢ < height(f), we write yval(r) for min,(r) (=
max,(r)). The line y = yval(r) contains all points colored black by the row r. The
leftmost (resp. rightmost) point in a row r is the leftmost (resp. rightmost) point
colored black by r, i.e., the point (min,(r),yval(r)) (resp. (max,(r),yval(r))).

Definition B.1 The partial order < on caveat-free colorings is defined by f < f' if
and only if height(f) = height(f'), length(f) = length(f") and d(f) = d(f")

5This number differs from the degeneracy as given in [14]. The reason is just the following. We
have found 36691 caveat-free conformations and 553 conformations including caveats. In [14], only
the number of caveat-free conformations is listed (i.e., 36691).
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Proposition B.2 Let f, f' be two caveat-free colorings with f < f'. Then HSurf(f) =
HSurf(f').

Proof. Since both f and f’ are caveat-free, we know that HSurf(f) = 2height(f) +
2 x length(f). Similarly, we get HSurf(f') = 2 x height(f) + 2length(f’). Since f < f’,
we have height(f) = height(f’) and length(f) = length(f’), which implies HSurf(f) =
HSurf(f"). a

We will show that every f can be extended to a <-maximal coloring f’ (which has
the same surface by the last proposition). This implies that the surface of <-maximal
colorings extending f is a lower bound on the surface of f. To calculate the surface
of <-maximal colorings, we can show, that every <-maximal coloring f has a simple
form, as e.g. shown in (6).

Definition B.3 Let f be a caveat-free coloring with d(f) > 1. Then f is called simple
if it satisfies the following conditions: 1.) for all 1 < i < height(f) we have

indent; (i, f) # 0V indent; (i + 1, f) # 0 = |indent; (i + 1, f) — indent, (7, f)| =1
indent, (i, f) # 0 Vindent, (i + 1, f) # 0 = |indent, (i + 1, f) — indent, (i, f)| = 1.

and 2.) the leftmost and the rightmost point of the first and the last row are odd.

Definition B.4 Let f be a simple coloring with frame (a,b) = (height(f),length(f)).
Then the tuple

(a,b,indent; (1, f),indent,.(1, f),indent,(a, f), indent,(a, f))

is called the characteristics of f. A tuple (a,b,i1,i2,i3,14) is called a characteristics if
it is the characteristics of some simple coloring.

First, we show some easy corelation between simple colorings and their character-
istics.

Proposition B.5 A simple coloring f is uniquely determined (up to translation) by
its characteristics, i.e., for two simple colorings f, f' having the same characteristics,
there is a vector ¥ € Z* such that

Ve L [(f() =1) & (f(F+7) =1)]

Proof (sketch). E.g., consider the left lower corner. Now Lemma B.9 implies that the
rows 1 to i + 1 have left indents 7,7 — 1,... ,0, where ¢ = indent; (1, f). The same holds
for the other corners. Since f simple, this uniquely determines f (up to translation).
O

Proposition B.6 Let C = (a,b,i1,i2,13,%4) be a tuple. Then C is a characteristics if
and only if

1. a—il—igzl,a—ig—’MZl,b—il—iQZl andb—ig—i421;

2. and a odd = (iy =i3 mod 2) A (iz =is4 mod 2)
a even = (i1 Zi3 mod 2) A (i Z iy mod 2)
bodd = (i1 =iy mod 2)A (i3 =44 mod 2)
b even = (i1 Zix mod 2) A (i3 Z4i4 mod 2)

Proof (sketch). Claim 1 follows directly from the definition of a characteristics of a
simple coloring. Claim 2 follows from the fact that the leftmost and rightmost point of
the first and last row must be odd, which implies that the first and last row must have
an odd number of points colored black. The same argument can be applied to the first
and last column. a

13



Corollary B.7 Let (a,b,i1,i2,i3,14) be a characteristics. Then the top and bottom
point of the first and last column are odd.

The advantage of a simple coloring f is that one can easily calculate e(f) + o(f)
and d(f) out of the characteristics, as shown in Theorem 2.5. For the proof of this
theorem we need an additional proposition.

Proposition B.8 Let f be a connected, caveat-free coloring with height(f) = a. Then

d(f)=a — |{i| the leftmost point of row(i, f) is even}|
—  |{i | the rightmost point of row(i, f) is even}|

Proof. Via induction on a = height(f). For the base case a = 1, it holds trivially. For
the induction step, let f be a coloring with height(f) = a + 1. Let f' be the coloring
which is generated by deleting the a + 1°¢ row in f. Then height(f’) = a, and we get

d(f'y =a — |{i| the leftmost point of row(i, f) is even}|
—  |{i | the rightmost point of row(i, f) is even}|

by induction hypothesis. Let r = row(a + 1, f). Then

0 if the leftmost and rightmost point of r are odd
d(f)y =d(f') +1—< 2 if the leftmost and rightmost point of r are even
1 else,

which proves the claim. O

Proof of Theorem 2.5. Let f be given as defined by the theorem. Then e(f) + o(f)
is just the number of points p € Z2 with f() = 1. But this is exactly a x b minus the
points that are excluded at the corners. Given the indents iy, ... ,i4, we get that we
exclude exactly

z‘*: ij(ij +1)
: 2
j=1

points at the corners.

For proving that d(f) = % + 1, we have to count the number of times the
starting (resp. end point) of the row(i, f) is even (according to Proposition B.8). This
happens only if indent;(i, f) (resp. indent, (i, f)) is zero. Now there are a — i; — i3
integers 7 with indent; (i, f) = 0, and a — i» — i4 integers ¢ with indent,. (7, f) = 0. Since
they all have indent 0, one can see that exactly every second row starts or ends with
an even point. Furthermore, Corollary B.7 guarantees that

1. a — iy — i3 and a — i» — i4 are both odd; and
2. that there are more i’s with indent; (¢, f) = 0 that start with an odd monomer.
The same holds for the right side. Hence, we get

a—il—i3—1 a—ig—i4—1

d(f) = a . .
a—il—i3—1+a—i2—i4—1
= a —
2
Dt — D — it — i — i — i . . . .
- a z12z3 19 — 14 _ z1+12-;—13+z4+1

O

The remaining part is to show that a <-maximal coloring is simple. We will first
show that this holds for a subclass of caveat-free colorings, namely connected colorings.
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We say that a coloring f is connected if there is no i such that there is a gap between
the it and i + 1% row, i.e., they have the form

gap gap

@ - o . or

Lemma B.9 Let f be a connected, caveat-free coloring with d(f) > 1 that is <-
maximal. Then f is simple.

Proof. First, we show that Condition B.3 is satisfied by every <-maximal coloring.
Suppose that f does not satisfy (7). Then there is some 1 < i < height(f) with

indent; (4, f) # 0 A |indent; (¢ + 1, f) — indent,; (4, f)| # 1.
We distinguish the following cases:

1. |indent;(i + 1, f) —indent; (4, f)| > 1. Since f is connected, the i'* and i + 1%¢ row
of f have the form

with positions p; = (z1,y1) and pa = (x1+1,y1) (for some x1,y;) being free. Now
p1 and ps are positions with distance 1, which implies that they have different
parities. Define f’ by

: _J1 if (z,y) =p1 or (z,y) =p
F@y) _{ flz,y) else. 1 ’

Since f is caveat-free, we know that f’ is also caveat-free. Furthermore, we know
that length(f) = length(f’) and height(f) = height(f’). Since p; and ps have
different parity, we know that

e(f)=e(f)+1 and o(f) = o(f) + L.

Hence, d(f) = d(f’), which implies f < f’. But this is a contradiction to the
<-maximality of f.

2. indent;(i + 1, f) = indent, (¢, f). This case can be reduced to the previous one by
rotating f by 90°.

The case that f does not satisfy (7) is analogous.

Now suppose that f does not satisfy the Condition B.3. Let a = height(f),
b = length(f), i1 = indent;(1, f), i» = indent,(1, f), i3 = indent;(a, f) and i3 =
indent,.(a, f) After possibly applying reflections, we can assume that the leftmost point
of the first row is even. We distinguish the following cases:

1. 41 #0. Let r = row(1, f) and define
p1 = (min,(r) — 1, yval(r))

(the point left to the leftmost point of r). Then p; is an odd point and within
the frame of f. Since d(f) > 1, Proposition B.8 implies that there must a j such
that the row ' = row(j, f) starts or ends with an odd point, and has non-empty
indent. If row 7’ starts with an odd point, then take

po = (min, (') — 1, yval(r')),
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otherwise define
ps = (max,(r') + 1, yval(r')).
Then py is an even point which is within the frame of f. Define f' by

f'(p):{ flp) ifp#piorp#ps

1 else

Then f' is caveat-free and connected with f < f’, which is a contradiction.

. i1 = 0. Since d(f) > 1, we know that by Proposition B.8 that not all of is,i3,144
can be lower or equal 1. Suppose that iy > 2. By the last case, we can assume
that last point of the first row is odd. Hence, the first three rows of f are of the
form

where again black beads indicated odd positions (z,y) with f(x,y) = 1, and grey
beads represent even positions. Let f’ be the coloring which is f except for the
first three rows, where f’ is of the form

oot ™I
miny(f)
maxy (f)-i,+1
max, (f)-i,+2
Le., f' is defined by

0 if (z,y) = (ming (f), miny (f))

1 if (2,y) = (ming (f), max; (f) — s + 1)
fl(way) = 1 if (m,y) :(minz(f)vmaxy(f)_i2+2)

1 if (2,) = (ming () + 1, max, (f) — i> + 2)

flzy) else

It is easy to check that d(f) = d(f’). Since we didn’t change the height or length
of f, and since we have added two points, this implies

f=<1r.

But this is a contradiction to the <-maximality of f. The other cases i3 > 2 and
14 > 2 are analogous.

We can even further restrict the characteristics of <-maximal colorings.
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Lemma B.10 Let f be a connected, <-mazimal coloring such that d(f) > 1. Then f
has a characteristics (a,b,i1,12,13,14) Such that

Vk,l € [14] : |Zk - ’L[| < 2.

Proof. Let f be <-maximal with characteristics (a,b, 1,42, %3,44). Assume that f does
not satisfy the condition of the lemma. Le., there is a i and 4; with k # [ € [1..4] such
that

i <ip—2
After applying possibly reflection or rotation, we can assume that
il = min{il, i2, i3, 24}
and that there is an i;, € [2..4] with i; < iy—2. Note that by definition of characteristics,
a—1t1 —i3 > 1and b—i; —ix > 1. We distinguish the following cases:
1. a—i; —iz3 > 1 and b—14; — iy > 1. By Condition B.3 and Corollary B.7, this
implies that a — il — ’i3 Z 3and b — ’il — 7:2 Z 3.
Suppose that iy satisfies i1 < i5 — 2. Consider C' = (a,b,1},i5,13,i4) with i} =
i1 + 2 and i}, = i» — 2. By Proposition B.6 we know that C is a characteristics,
which implies that there is some simple coloring f’ having characteristics C. By
Lemma 2.5, we know that
(i1 +2) + (i2 —2) + i3 + 44 11 iy +ig + iy

d(f') = 5 +l= o+ 1=d(f).

Since f and f’ have the same length and height, we need only to show that
e(f') +o(f") > e(f) + o(f) for showing that f < f'. But this is equivalent to
show that

nd(f', f) = e(f') + o(f") —e(f) + o(f) > 0.
By Lemma 2.5, we get

nd(f,f) = axb_(ii@’l; D +z"2<z"22+1> +i3(i32+ D,

4 . .
~ (axpy Y B,

—(i1 +2)(i1 +3) — (ia —2) (12 — 1) + 41 (i1 + 1) +i2(ia + 1)

4 (i4 + ].)
2

2

_ (B 4501 +6) — (3 —3ix+2) +iF +i1 +3 + 1
2

iy 4 4iy—8

B 2

= 2((i2 —2) —1i1)
> 0 (since i1 < iy — 2 by assumption)

Hence, f < f', which is a contradiction. The other cases i1 < i3—2 and i; < i4—2
are analogous.

2. a—1; —i3 = 1 and b —i; — iy > 1. Note that by condition a —i; —i3 = 1, we
cannot just enlarge ¢; without simultaneously decreasing i3 by the same value.
Hence, we can consider only characteristics of the forms

(a,b,h+k,i2+l,i3—k,i4—l) or (a,b,h+k,i2—l,i3—k,i4+l)

We distinguish the following cases:
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(a) i1 < iz—2. We can then show that there is an f’ with f < f’ by considering
the characteristics (a,b,i; + 2,142,143 — 2,44) similar to the previous case.

(b) 21 Zi3—2/\(i1 <i2—2)V(i1 <i4—2).
Suppose that i; < iz —2. Since a —i; —i3 = 1 we get i3 = a —i; — L.
Furthermore, we know that a —is — 74 < 1, which implies

i4§a—i2—1<a—(i1+2)—1:i3—2 (7)

Consider the tuple C' = (a,b,i1+1,ia—1,i3—1,i4+1), which is a characteris-
tics by Proposition B.6. Hence, there is a simple f’ having the characteristics
C. We get again d(f) = d(f'), and we have to show that

nd(f', f) = e(f") +o(f') — e(f) + o(f) > 0.
By Lemma 2.5, we get
— (i1 + 1) (i1 + 2) = (ia — 1)is — (i3 — )iz — (is + 1)(i4 + 2)

nd(flaf) = 5
L Bl ia(ia + 1) +iais +1) +ialia + 1)
2
=30 —2— i3ty — i iy — i3 — 3y — 2
B 2
N T+ +i34is + i3 +iz+if +ia
2
=201 + 209 + 203 — 204 — 4

2
= i2—i1+i3_i4_2
> 2+2-2=2 sincei; <iz—2and iy <iz3—2by (7).
which shows that f < f'.

The case that 7; < 24—2 can be proved analogous to the case that i; < i5—2.
We can then show that i < i3, and prove the existence of an f' with f < f’
by using the characteristics (a, b,y + 1,49 + 1,43 — 1,44 — 1).

(¢c) a—1iy —iz =1and b —1i; —i2 = 1. Analogous to the previous case.

O

Finally, we have to treat unconnected, caveat-free colorings, and colorings contain-
ing caveats. For simplicity, we will only sketch the proofs for these kind of colorings.

Lemma B.11 Let f be a caveat-free coloring that is not connected. Then there is a
coloring f' with f < f'.

Proof (sketch). Let f have frame (a,b). If one has n unconnected subparts with
frames (a1,b1), ..., (an,by), then the caveat-freeness of f implies that

a=a+...+a, and b=0bi+ ...+ by,

Then one can show that one finds always a characteristics for the frame (a, b) which has
the same difference than the sum of differences of the characteristics of the subparts of
f, but which has more points colored black. O

We can even show that we will always find a caveat-free coloring with minimal
surface, but we will skip the proof.

Lemma B.12 Let f be a coloring that is not caveat-free. Then there is some caveat-
free coloring f' such that d(f") = d(f), HSurf(f') < HSurf(f), and e(f’) + o(f') >

e(f) + o(f).
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